System Gonsole User Guide

101 Innovation Drive Software Version: 9.1
San Jose, CA 95134 Document Date: November 2009
www.altera.com

http://www.altera.com

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

UG-01041-1.3

L5. EN IS0 5001

Contents

Chapter 1. System Console Commands

INtrodUction i e e 1-1
Console Commandsttt e e e 1-3
Programmable Logic Device (PLD) Commands 1-4
Board Bring-Up Commands 1-4
JTAG Debug Command 1-4
Clock and Reset Signal Commands i 1-5
Avalon-MM and Interface Commands ittt e 1-5
Processor COmMmMANdSottt e e 1-6
Bytestream Commands 1-7
Design Plugin Commands 1-7
Interactive Helpo 1-12

Chapter 2. System Console Examples

INtrodUctiono oo e 2-1
LED Light Show Example 2-1
JTAG Examples 2-3

Verify JTAG Chain 2-3

Verify Clocko 24
Checksum Example 2-5
Nios II Processor Example 2-7

Additional Information

Revision History Info—1
How to Contact Altera Info—1
Typographic Conventions i Info—1

© November 2009 Altera Corporation System Console User Guide

System Console User Guide © November 2009 Altera Corporation

1. System Console Commands

Introduction

The System Console performs low-level hardware debugging of SOPC Builder
systems. The System Console provides read and write access to the IP cores
instantiated in your SOPC Builder system. You can use the System Console for the
initial bring-up of your printed circuit board and low-level testing. The System
Console is the appropriate tool for all of the following system debugging tasks:

m Verifying that the clock is toggling

m Verifying component pinouts

m Testing memories and peripheral devices

m Determining the value of the reset signal

m Perform loopback testing of Avalon® Streaming (Avalon-ST) interfaces

The System Console runs in command line mode. You can work interactively or run a
Tcl script. The System Console prints responses to your commands in the terminal
window. To facilitate debugging with the System Console, you can include one of the
four SOPC Builder components with interfaces that the System Console can use to
send commands and receive data. Table 1-1 lists these components.

Table 1-1. SOPC Builder Components for Communication with the System Console (Nofe 1)

Component Name Debugs Components with the Following Interface Types
The Nios® Il processor with JTAG debug Components that include an Avalon® Memory-Mapped (Avalon-MM)
enabled slave interface. The JTAG debug module can also control the Nios ||

processor for debug functionality, including starting, stopping, and
stepping the processor.

JTAG to Avalon master bridge Components that include an Avalon-MM slave interface
Avalon Streaming (Avalon-ST) JTAG Interface Components that include an Avalon-ST interface
JTAG UART The JTAG UART is an Avalon-MM slave device that can be used in

conjunction with System Console to send and receive byte streams.

Note to Table 1-1:

(1) The System Console can also send and receive byte streams from any SLD node whether it is instantiated in SOPC Builder component provided
by Altera®, a custom component, or part of your Quartus® Il project; however, this approach requires detailed knowledge of the JTAG
commands.

“®.e Tolearn more about these components refer to the following web pages and

documents:
m The Nios II Processor product web page

m SPI Slave/|TAG to Avalon Master Bridge Cores chapter in volume 5 of the Quartus II
Handbook

m Avalon-ST JTAG Interface Core chapter in volume 5 of the Quartus II Handbook
& sld_virtual_jtag MegaFunction User Guide
m JTAG UART Core chapter in volume 5 of the Quartus II Handbook

© November 2009 Altera Corporation System Console User Guide

http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/hb/nios2/n2cpu_nii51009.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55011.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55008.pdf
http://www.altera.com/literature/ug/ug_virtualjtag.pdf

Chapter 1: System Console Commands
Introduction

Figure 1-1 illustrates the interfaces of these components that the System Console can

use.

Figure 1-1. Interfaces (Paths) the System Console Can Use to Send Commands

Connections You Make
in SOPC Builder

Nios Il Processor

User Component

Avalon-MM | OF

Avalon-MM
Master

Virtual JTAG
Interface

JTAG Avalon Master Bridge

Avalon-MM Virtual JTAG

Slave

User Component

Avalon-ST

Master Interface

Transparent Connections

Avalon-ST JTAG Interface

Avalon-ST

Virtual JTAG

Source
and Sink

Source and
Sink

Interface

JTAG UART

Legacy
Ave;l’?n- MM TG (I
ave Interface

Quartus Il

Virtual

JTAG Hub

(Soft IP)

To
Host PC
Running

JTAG TAP | System Console
Controller |——p
(Hard IP)

JTAG Logic

Altera recommends that you also include the following components in your system:

® On-chip memory

m JTAG UART

m System ID core

In its initial configuration, the System Console provides seven different types of
services. Different modules can provide the same type of service. For example, both
the Nios II processor and the JTAG to Avalon Bridge master provide the master
service; consequently, you can use the master commands to access both of these

modules.

If your system includes a Nios II/f core with a data cache it may complicate the
debugging process. If you suspect that writes to memory from the data cache at
nondeterministic intervals are overwriting data written by the System Console, you
can disable the cache of the Nios II/f core while debugging.

System Console User Guide

© November 2009 Altera Corporation

Chapter 1: System Console Commands 1-3

Console Commands

You can start the System Console from a Nios II command shell.

1. Choose All Programs > Altera > Nios II EDS <version> Command Shell
(Windows Start menu) to run a Nios II command shell.

2. To start the System Console, type the following command:

system consol e ¢

You can customize your System Console environment by adding commands to the
<quartus_install_dir>/sopc_builder/system_console_macros/system_console_rc.tcl
file. On startup, System Console automatically runs any Tcl commands in this file.

"=~ Many of the System Console commands do not work unless you are
connected to a system using a programming cable.

The following sections describe how to use each type of command.

Console Commands

The console commands enable testing. You can use console commands to identify a
module by its path, and to open and close a connection to it. The pat h that identifies
a module is the first argument to most of the other System Console commands. To
exercise a module, follow these steps:

1. Identify a module by specifying the pat h to it, using the get _ser vi ce_pat hs
command.

2. Open a connection to the module using the open_ser vi ce command.
3. Run Tcl and System Console commands to test the module.
4. Close a connection to a module using the cl ose_ser vi ce command.

Table 1-2 describes the syntax of the five console commands.

Table 1-2. Console Commands

Command Arguments Function
get _service_types — Returns a list of the 7 services that the System Console
manages: master, bytestream, processor, sld,
jtag_debug, device, and plugin.
get _servi ce_pat hs <service_type_nanme> Returns a list of paths to nodes that implement the

requested service type.

open_service

<servi ce_type_nane>, Opens the service type specified.
<servi ce_pat h>

cl ose_service

i s_service_open

<servi ce_type_nane>, Closes the service type specified.

<servi ce_pat h>

<servi ce_t ype_nane>, Returns 1 if the service type provided by the path is
<servi ce_pat h> open, 0 if the service type is closed.

© November 2009 Altera Corporation System Console User Guide

1-4

Chapter 1: System Console Commands
Programmable Logic Device (PLD) Commands

Programmable Logic Device (PLD) Commands

The PLD commands provide access to programmable logic devices on your board.
Before using these commands, you must identify the path to the programmable logic
device on your board using the get _ser vi ce_pat hs command described in

Table 1-2.

Table 1-3 describes the PLD commands.

Table 1-3. PLD Commands

Command Arguments Function
devi ce_downl oad_sof <devi ce_pat h>, This command loads the specified SRAM object file
<sof _file> (.sof) file to the device specified by the path.
devi ce_| oad_j di <devi ce_pat h>, This command renames the Tcl interface layer's
<jdi _file> nodes to the names specified in the JTAG debug
interface (.jdi) file, making your design easier to
understand.

Board Bring-Up Commands

The board bring-up commands allow you to test your system. These commands are
presented in the order that you would use them during board bring-up, including the
following four stages:

1. Verify JTAG connectivity

2. Verify the clock and reset signals

3. Verify memory and other peripheral interfaces

4. Verify basic Nios II processor functionality

The System Console is intended for debugging the basic hardware functionality of
your Nios II processor, including its memories and pinout. Once the hardware is
functioning correctly, you can refer to the Nios II Software Build Tool Reference in the
Nios II Software Developer’s Handbook for further software debugging. If you are writing

device drivers, you may want to use the System Console and the Nios II software
build tools together to debug your code.

JTAG Debug Command

System Console User Guide

You can use this command to verify the functionality and signal integrity of your
JTAG chain. Your JTAG chain must be functioning correctly to debug the rest of your
system. To verify signal integrity of your JTAG chain, Altera recommends that you
provide an extensive list of byte values. Table 1-4 lists this command.

© November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 1: System Console Commands

Clock and Reset Signal Commands

Table 1-4. JTAG Commands

Command

Arguments

Function

jtag_debug_| oop

<pat h>,
<list_of _byte_

val ues>

Loops the specified list of bytes through a loopback of t di and
t do of a system-level debug (SLD) node. Returns the list of byte
values in the order that they were received. Blocks until all bytes
are received. Byte values are given with the Ox (hexadecimal)
prefix and delineated by spaces.

Clock and Reset Signal Commands

The next stage of board bring-up tests the clock and reset signals. Table 1-5 lists the
three commands to verify these signals. You can use these commands to verify that
your clock is toggling and that the reset signal has the expected value.

Table 1-5. Clock and Reset Commands

Command

Argument

Function

jtag_debug_sanpl e_cl ock

<pat h>

Returns the value of the clock signal of the system clock that drives the
module's system interface. The clock value is sampled asynchronously;
consequently, you may need to sample the clock several times to
guarantee that it is toggling.

j tag_debug_sanpl e_reset

<pat h>

Returns the value of the reset signal of the system reset that drives the
module's system interface.

jtag_debug_sense_cl ock

<pat h>

Returns the result of a sticky bit that monitors for system clock activity. If
the clock has ever toggled, the bit is 1. Returns t r ue if the bit has ever
toggled and otherwise returns f al se. The sticky bit is reset to 0 on read.

Avalon-MM and Interface Gommands

These commands allow you to test the modules included in your FPGA. You can read
or write the Avalon-MM interfaces using the master read and write commands.
Additionally, you can use the SLD commands to shift values into the instruction and
data registers of SLD nodes and read the previous value. Table 1-6 lists these
commands.

Table 1-6. Module Commands (Notfe 1)

Command

Arguments

Function

Avalon-MM Master Commands

master_wite_nenory

<pat h>, <address>,
<list_of byte_val ues>

master _wite 8

<pat h>, <address>,
<list_of byte val ues>

master_wite_16

<pat h>, <address>,
<list_of byte_ val ues>

master_wite_32

<pat h>, <address>,
<list_of byte_ val ues>

Writes the specified value to the specified path and
address. Values are given in hexadecimal format with
the Ox prefix and delineated by spaces.

© November 2009 Altera Corporation

System Console User Guide

Chapter 1: System Console Commands
Processor Commands

Table 1-6. Module Commands (Note 1)

Command Arguments

Function

mast er _read_nenory | <pat h>,
<base_addr ess>,
<si ze_i n_bytes>

master _read 8 <pat h>,
<base_ address>,
<si ze_in_bytes>

master _read_16 <pat h>,

<base_addr ess>,
<size_in_multiples_of _
16_bits>

master _read_32 <pat h>,

<base_address>,
<size_in_multiples_of _
32_bits>

Returns a list of read values.

SLD Commands

sl d_access_ir <pat h>, <val ue>,
<t i meout > (in useconds)

Shifts the instruction value into the instruction register
of the specified node. Returns the previous value of the
instruction. If the timeout value is set to 0, the operation
never times out. A suggested starting value for

ti meout is 1000 useconds.

sl d_access_dr <pat h>,
<size_in_bhits>,

<t i meout > (in pseconds),
dist_of byte_val ues>

Shifts the byte values into the data register of the SLD
node up to the size in bits specified. If the t i neout
value is set to 0, the operation never times out. Returns
the previous contents of the data register. A suggested
starting value fort i meout is 1000 useconds.

sl d_I| ock sl d_Il ock <path>
<t i meout > (in mseconds)

Locks the SLD chain to guarantee exclusive access. If
the SLD chain is already locked, tries for <t i meout >
mseconds before returning -1, indicating an error.
Returns 0 if successful.

sl d_unl ock sl d_unl ock <pat h>

Unlocks the SLD chain.

Notes to Table 1-6:

(1) Transfers performed in 16- and 32-bit sizes are packed in little endian format.

Processor Commands

These commands allow you to start, stop, and step through software running on a
Nios II processor. They also allow you to read and write the processor’s registers.

Table 1-7 lists the commands.

Table 1-7. Processor Commands (Part 1 of 2)

Command Arguments Function
processor _run <pat h> Puts the processor into run mode.
processor_stop <pat h> Puts the processor into stop mode.
processor_step <pat h> Executes one assembly instruction.
processor _get_regi ster |<path> Returns a list with the names of all of the processor's
_nanes accessible registers.

System Console User Guide

© November 2009 Altera Corporation

Chapter 1: System Console Commands 1-7
Bytestream Commands

Table 1-7. Processor Commands (Part 2 of 2)

Command Arguments Function

processor _get _regi ster |<path>, Returns the value of the specified register.
<r egi st er _nanes>

processor _set _register |<path>, Sets the value of the specified register.
<r egi st er _nanes>

Bytestream Commands

These commands provide access to modules that produce or consume a stream of
bytes. One example of a module that operates on byte streams is the JTAG UART.
Bytestream service can be built on top of SLD services which transfer bits. You can use
the bytestream service to communicate directly to the Altera JTAG Interface and then
drive Avalon-ST components.Table 1-8 lists the commands.

Table 1-8. Bytestream Commands

Command Arguments Function
byt est r eam send <pat h>, Sends the list of byte values on the specified path.
<list_of byte_ val ues> | Values are in hexadecimal format and delineated by
spaces.
byt est ream r ecei ve <pat h>, Returns a list of received bytes.
<nunber _of _bytes>

Design Plugin Commands

The design plugin commands allow you to extend the functionality of the System
Console. To use a plugin, you must enable it, using the following procedure:

1. Identify the available plugins using the get _ser vi ce_pat hs command.

2. Enable a plugin by specifying the pat h to it, using the get _ser vi ce_pat hs and
pl ugi n_enabl e commands. For example, the following commands enable the
Desi gnsPl ugi nProvi der plugin

a. get_service_paths plugin ¢
b. set design_plugin [lindex [get_service_paths plugin] 2]+

The get _servi ce_pat hs command always returns a list. You must index into
the list using the | i ndex command. In this case, the variable desi gn_pl ugi n is
the third element on the this, (starting from 0); however, if you enable more
plugins, its position on the list may change.

c. plugin_enabl e $design_plugin ¢
3. Run System Console plugin commands to test the component.

4. Disable a plugin using the pl ugi n_di sabl e command.

© November 2009 Altera Corporation System Console User Guide

1-8 Chapter 1: System Console Commands
Design Plugin Commands

The Desi gnsPl ugi nPr ovi der allows the System Console to scan your project
directory for files of interest, including your Quartus II project file (.qpf) and SOPC
Information File (.sopcinfo) file. Using these files, the System Console identifies
Avalon-MM slave components in your design. You can use two Avalon-MM slave
components, the Avalon-ST Data Pattern Checker and the Avalon-ST Data Pattern
Checker, in conjunction with the System Console to test Avalon-ST interfaces in
loopback mode. Figure 1-2 illustrates these components being used to perform a
loopback test for a custom component with Avalon-ST interfaces.

Figure 1-2. Using the Data Pattern Generator and Checker To Test a Custom Component with Avalon-ST Interfaces

Data Pattern Checker
Avalon-ST Avalon-MM |
»| pattern In CSR (Slave)|
Custom Component To
JTAG Avalon Master Bridge Quartus Il JTAG Logic Host PC
L1 Avalon-ST Running
p Receive System
back Avalon-MM | Avalon-MM Virtual JTAG virtual JTAGTAP | Console
Loopbacl Slave Master Interface JTAG Hub Controller [———p
Avalon-ST (Soft IP) (Hard IP)
P Transmit
Data Pattern Generator
Avalon-ST Avalon-MM |
Pattern Out CSR (Slave)|
Table 1-9 lists the design plugin commands.
Table 1-9. Plugin Commands (Part 1 of 4)
Command Arguments Func
Plugin Service Type Commands
pl ugi n_enabl e <pl ugi n- pat h> Enables the plugin specified &

enabled, you can retrieve the
<servi ce_type_nanme>
checkers using the get _ser
get _service_types col

pl ugi n_di sabl e <pl ugi n- pat h> Disables the plugin specified

i s_plugin_enabl ed <pl ugi n- pat h> Returns a non-zero value whe
path is enabled.

System Console User Guide © November 2009 Altera Corporation

uonesodion e1aly 6002 JaqUWaAON @

apIng Jas() 9]0Su0y WalsAS

Tahle 1-9. Plugin Commands (Part 2 of 4)

Command

Arguments

Function

Design Service Type Commands

desi gn_| oad

<quart us- proj ect - pat h>or
<qpf-file-path>

Loads a model of a Quartus Il design into the System
Console. For example, if your .qpf file is in
c:/projects/loopback, type the following command:
desi gn_| oad /projects/| oopback

design_link

<desi gn- pat h>, <devi ce-

servi ce- pat h>

Links a Quartus Il logical design with a physical device.
For example, you can link a Quartus Il design called
2¢35_quartus_design to a 2¢35 device. After you create
this link, the System Console creates the appropriate
correspondences between the logical and physical
submodules of the Quartus Il project. Example 1-1 on
page 1-12 shows a transcript illustrating the

desi gn_I oad and desi gn_I i nk commands.

Note that the System Console does not verify that the link
is valid, so that if you create an incorrect link, the System
Console does not report an error.

Data Pattern Generator Service Type Commands

dat a_pattern_generator_start

<servi ce- pat h>

Starts the data pattern generator.

dat a_pat t er n_gener at or _st op

<servi ce- pat h>

Stops the data pattern generator.

data_pattern_generator_is_generating

<servi ce- pat h>

Returns non-zero if the generator is running.

dat a_pattern_generator_inject_error

<servi ce- pat h>

Injects a 1-bit error into the generator's output.

spuewiwon uibinid ubisaq

spuewwo? ajosuog wajshg :| Jaydeyg

apINg 1as() 9J0Su0y WalsAg

uonesodion eIdyY 6002 J9UIAAON ©

Table 1-9. Plugin Commands (Part 3 of 4)

Command

Arguments

Function

data_pattern_generator_set_pattern

<servi ce- pat h>,
<patt er n- nane>

Sets the output pattern set pattern specified by the
<pat t er n- nane>. In all, 6 patterns are available, 4
are pseudo-random binary sequence s (PRBS) and 2 are
high and low frequency. The following pattern names are
defined:

m PRBS7
m PRBS15
m PRBS23
m PRBS31

m HF-outputs a high frequency, constant pattern of
alternating Os and 1s

m LF-outputs a low frequency, constant pattern of
10b’1111100000 for 10-bit symbols and
8b’11110000 for 8-bit symbols

data_pattern_generator_get_pattern

<servi ce- pat h>

Returns currently selected output pattern.

dat a_pattern_generator_get _avail abl e_patterns

<servi ce- pat h>

Returns a list of available data patterns by name.

dat a_pattern_generator_enabl e_preanbl e

<servi ce- pat h>

Enables the preamble mode at the beginning of
generation.

dat a_pattern_generator_di sabl e_preanbl e

<servi ce- pat h>

Disables the preamble mode at the beginning of
generation.

dat a_pattern_generator_is_preanbl e_enabl ed

<servi ce- pat h>

Returns a non-zero value if preamble mode is enabled.

data_pattern_generator_set_ preanbl e _word

<servi ce- pat h>,
<pr eanbl e- wor d>

Sets the preamble word.

dat a_pattern_generator_get_preanbl e_word

<servi ce- pat h>

Gets the preamble word.

data_pattern_generator_set preanbl e_beats

<servi ce- pat h>
<nunber - of - pr eanbl e- beat s>

Sets the number of beats to send out the in the preamble
word.

dat a_pattern_generator_get_preanbl e_beats

<servi ce- pat h>

Returns the currently set number of beats to send out the
preamble word.

Data Pattern Checker Commands

dat a_pattern_checker_start

<servi ce- pat h>

Starts the checker.

dat a_pattern_checker_stop

<servi ce- pat h>

Stops the checker.

spuewiwo) uibnid ubisaq

0l-1

spuewiwo? ajosuog wajshg :| Jaydeyy

uoneiodion e1a)y 600 JaGISAON B

apIng Jas() 9]0Su0y WalsAS

Table 1-9. Plugin Commands (Part 4 of 4)

Command

Arguments

Function

dat a_pattern_checker_i s_checki ng

<servi ce- pat h>

Returns a non-zero value if the checker is running.

dat a_pattern_checker_is_| ocked

<servi ce- pat h>

Returns non-zero if the checker is locked onto the
incoming data.

dat a_pattern_checker_set _pattern

<servi ce- pat h>,
<pattern- nane>

Sets the expected pattern to the one specified by the
<pattern- nanme>.

dat a_pattern_checker_get_pattern

<servi ce- pat h>

Returns the currently selected expected pattern by name.

dat a_pattern_checker _get _avail abl e_patterns

<servi ce- pat h>

Returns a list of available data patterns by name.

dat a_pattern_checker_get _data

<servi ce- pat h>

Returns a list of the current checker data, providing the
number of bits and the number of errors.

dat a_pattern_checker _reset_counters

<servi ce- pat h>

Resets the bits and error counters inside the checker.

spuewwon uibinid ubisaq

spuewwo? ajosuog wajshg :| Jaydeyg

L=l

1-12 Chapter 1: System Console Commands
Interactive Help

Example 1-1 shows how to load and link a Quartus II design.set_

Example 1-1. Loading and Linking a Design

% get _servi ce_paths plugin

/ pl ugi ns/ com al t era. syst entonsol e. pl ugi n. pli.PliDeviceProvider

/ pl ugi ns/ com al t era. syst enconsol e. transcei vers.internal . Transcei ver Pl ugi nProvi der
/ pl ugi ns/ com al t era. syst entonsol e. desi gns. i nt ernal . Desi gnsPl ugi nProvi der

/ plugi ns/ com al t era. systentonsol e. i nternal . pl ugi n. menory. Menor yPl ugi nProvi der

/ pl ugi ns/ com al t era. syst enconsol e. i nt er nal . debugger. ni 0s2. Ni 0s2Support

/ pl ugi ns/com al t era. syst entonsol e. i nt er nal . debugger . Debugger

/ plugi ns/com al tera. systentonsol e.i nternal . plugin.jtag.sld. SLDConnecti onProvi der

% set design_plugin [lindex [get_service_paths plugin] 2]
/ plugi ns/ com al t era. syst entonsol e. desi gns. i nt ernal . Desi gnsPl ugi nProvi der

% pl ugi n_enabl e $desi gn_pl ugin
Enabl i ng plugin: com al tera. systentonsol e. desi gns. i nt ernal . Desi gnsPl ugi nProvi der

% get _servi ce_pat hs devi ce
{/ connecti ons/ USB- Bl ast er [USB-0]/EP2C35}

% set device_path [lindex [get_service_paths device] O]
/ connecti ons/ USB- Bl ast er [USB- 0]/ EP2C35

% desi gn_|l oad /projects/9.1/standard

QuartusDesi gnFactory el aborating \projects\9. 1\standard

QuartusDesi gnFactory found SOF File at Niosll_cycl onell_2c35_standard. sof
QuartusDesi gnFactory found JDI File at N osll_cyclonell_2c35_standard.j di
QuartusDesi gnFactory found SOPC Info File at

\ proj ects\9. 1\ standard\ Ni osl | _cycl onel | _2¢c35_st andar d_sopc. sopci nfo

% set design_path [lindex [get_service_paths design] 0]
/ desi gns/ st andard

% desi gn_l i nk $desi gn_path $devi ce_path

Created a link from/designs/standard to /connections/USB- Bl ast er [USB-0]/EP2C35.
Created a link from/designs/standard/ N osl|

cycl onel | _2¢35_st andard_sopc. sopci nfo/ cpu. data_naster to /connections/ USB- Bl ast er

[USB- 0] / EP2C35/ cpu.

Created a link from

/ desi gns/ standard/ Ni osl | _cycl onel | _2¢c35_st andar d_sopc. sopci nfo/ cpu. data_naster/jtag_
uart.aval on_jtag_slave to /connections/USB-Bl aster [USB-0]/EP2C35/jtag_uart

Interactive Help

Typing hel p hel p into the System Console lists all available commands. Typing
hel p <command name> provides the syntax of individual commands. The System
Console provides command completion if you type the beginning letters of a
command and then press the Tab key.

=~ The System Console interactive help commands only provide help for enabled

services; consequently, typing hel p hel p does not display help for a plugin unless
you have enabled it.

System Console User Guide © November 2009 Altera Corporation

2. System Console Examples

Introduction

This chapter uses three different SOPC Builder systems to demonstrate the
functionality of the System Console. The System-Console.zip file contains design files
for the first two example systems. This zip file includes files for both the Nios II
Development Kit Cyclone® II Edition and the Nios II Development Kit Stratix® I
Edition. You can download the design files for the example designs from the Altera
website. A hyperlink to the design files appears next to this document on the User
Guide web page.

The first example Tcl script creates a LED light show on your board. The SOPC
Builder system for this example includes two modules: a JTAG to Avalon master
bridge and a PIO core. The JTAG to Avalon master bridge provides a connection
between your development board and SOPC Builder system via serial peripheral
interface (SPI). The PIO module provides a memory-mapped interface between an
Avalon-MM slave port and general-purpose 10 ports.

«o For more information about these components refer to the SPI Slave/]TAG to Avalon
Master Bridge Cores chapter in volume 5 of the Quartus II Handbook and the PIO Core
chapter in volume 5 of the Quartus II Handbook.

The first example program sends a series of mast er _wri t _8 commands to the
JTAG Avalon master bridge. The JTAG Avalon master sends these commands to the
Avalon-MM slave port of the PIO module. The PIO I/O ports connect to FPGA pins
that are, in turn, connected to the LEDs on your development board. The write
commands to the PIO Avalon-MM slave port result in the light show.

'~ The instructions for these examples assume some familiarity with the Quartus Il and
SOPC Builder software.

LED Light Show Example

Figure 21 illustrates the SOPC Builder system for the first example.

© November 2009 Altera Corporation System Console User Guide

http://www.altera.com/literature/hb/nios2/qts_qii55011.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55011.pdf
http://www.altera.com/literature/lit-ug.jsp
http://www.altera.com/literature/lit-ug.jsp
http://www.altera.com/literature/hb/nios2/n2cpu_nii51007.pdf

2-2

Chapter 2: System Console Examples
LED Light Show Example

Figure 2-1. SOPC Builder System for Light Show Example

JTAG
Avalon-MM
Master

A

4

System
Interconnect
Fabric
A

\ 4

Conduit

Interface
PIO LED

(Avalon-MM
Slave)

4444;444

To build this example system, complete the following steps:

1.

System Console User Guide

On your host computer file system, locate the following directory: <Nios II EDS
install path>\examples\<verilog or vhdl>\<board version>\standard. Each
development board has a VHDL and Verilog HDL version of the design. You can
use either of these design examples.

Copy the standard directory to a new location. By copying the design files, you
avoid corrupting the original design and avoid issues with file permissions. This
document refers to the newly-created directory as the c:\ <projects>\standard
directory.

Copy the System_Console.zip file to the c:\< projects>\standard directory and
unzip it. The jtag_pio_cii and jtag_pio_sii directories are created for the
Cyclone II and Stratix II development boards.

Choose All Programs > Altera > Nios II EDS <version> Command Shell
(Windows Start menu) to run a Nios II command shell.

Change to the directory for your board.

To program your board with the .sof file.Type the following command in the
Nios II command shell:

ni os2- confi gur e-sof <sof name>. sof «

If your development board includes more than one JTAG cable you must specify
which cable you are communicating with as an argument to the

ni os2- confi gure-sof <sof name>. sof command. To do so, type the
following commands:

a. jtagconfig+

© November 2009 Altera Corporation

Chapter 2: System Console Examples 2-3

JTAG Examples

Figure 2-2. jtagconfig Output

b=I1 EDS1% jtagconfig
puteBlaster [LPT11

able to lock chain (Hardware not attached>

SB-Blaster [USB-81
EAB4@DD EP2C35

JTAG Examples

Figure 2-2 gives sample output from the j t agconf i g command. This output
shows that the active JTAG cable is number 2. Substitute the number of your JTAG
for the <cable_number> variable in the following command:

b. ni 0os2-configure-sof -c <cable_number> <sof_name>. sof «
You can then run the LED light show example by typing the following command:
systemconsole --script=led |ightshowtcl «

You can see the LEDs performing a running light demonstration. Press Ctrl+C to
stop the LED light show.

To see the commands that this script runs, open the led_lightshow.tcl file in your
\jtag_pio_<cii_or_sii> directory.

There are two JTAG examples. The first JTAG example gives you some practice
working with the System Console as an interactive tool. The second verifies that the
clock is toggling.

Verify JTAG Chain

In this example, you verify the JTAG chain on you board. To run this example,
complete the following steps:

1.

Choose All Programs > Altera > Quartus II <version> (Windows Start menu) to
run the Quartus II software. Open the Quartus II project file, jtag_pio.qpf or

jtag_pio_sii.qpf.

On the Tools menu, click SOPC Builder.

On the SOPC Builder Tools menu, click System Console.

Set the path to the j t ag_debug service by typing the following command:
set jd_path [lindex [get_service_paths jtag debug] 0]

The get _ser vi ce_pat hs command always returns a list, even if the list has a
single item; consequently, you must index into the list using the | i ndex
command. In this case, the variable jd_path is assigned the string that is the Oth
element of the list.

Open the | t ag_debug service by typing the following command:
open_service jtag_debug $jd_path «
Set up a list of byte values to test the chain by typing the following command:

set values [list Oxaa 0x55 Oxaa 0x55 Oxaa Ox55 Oxaa 0x55 Oxaa 0x55
Oxaa 0x55 Oxaa 0x55 Oxaa 0x55 Oxaa 0x55] «

© November 2009 Altera Corporation System Console User Guide

2-4

Chapter 2: System Console Examples
JTAG Examples

Verify Clock

System Console User Guide

7. Loop the values by typing the following command:
j tag_debug_l oop $jd_path $val ues +

If the j t ag_debug_| oop command is successful, you should see the values that
you sent reflected in the System Console. Figure 2-3 shows the transcript from this
interactive session.

Figure 2-3. The jtag_debug_loop Command

% set jd path [lindex [get serwice_patha Jtag debug] 0] -
froot JCOHHECTIOHS fUSE-Blaster [USBE-0] /EP2C35/[MFG:110 ID: 132 IHST:0 VER:1]

% open_serwvice jtag_debug $jd_path
% get wvalues [list Oxaa 0x55 Oxaa 0x55 Oxaa 0x55 Oxaa 0x55 Oxaa 0x55 Oxaa 0x55 Oxaa 0x55 L
Oxaa 0x55 Oxaa O0x55]

Oxaa 0x55 Oxaa 0x595 Oxaa 0x55 Oxaa 0x55 Oxaa 0x55 Oxaa 0x55 Oxaa 0x55 Oxaa 0x55 Oxaa 0x55

% jtag_debug_loop $jd path §values
Oxaa 0x55 Oxaa 0x595 Oxaa 0x55 Oxaa 0x55 Oxaa 0x55 Oxaa 0x55 Oxaa 0x55 Oxaa 0x55 Oxaa 0x55

8. Close the j t ag_debug service by typing the following command:
cl ose_service jtag_debug $jd_path+

This example provides the beginnings of a JTAG chain validation workflow.
Depending on the number of devices and FPGAs in your JTAG chain, you can expand
upon this test by performing more operations in parallel, with larger data sets, and
potentially multiple devices.

The command to verify that your clock is toggling samples the clock asynchronously.
Consequently, you may need to use this command several times to determine if the
clock is toggling. The jtag_debug_sample_clock.tcl script samples the clock 10 times.
To run this script, type sour ce jtag_debug_sanpl e_cl ock. tcl at the System
Console prompt. You should see 10 values for the JTAG clock printed to the System
Console as Figure 2—4 illustrates.

Figure 2-4. The jtag_debug_sample_clock Command

% source jtag_debuy_sample_clock.tcl
Serwvice Open 3tatus is: 1

Multiple samples of clock status

L= e e e e R Y e R

Cloging jtag_debuy service path ($jclk)

© November 2009 Altera Corporation

Chapter 2: System Console Examples 2-5

Checksum Example

Checksum Example

In this example, you add an on-chip memory and hardware accelerator to the
previous SOPC Builder system. The hardware accelerator calculates a checksum.
Figure 2-5 illustrates this system.

Figure 2-5. SOPC Builder System for Checksum Accelerator Example

JTAG
Avalon-MM
Master
A
4
System Interconnect Fabric 1
A 'y -
' ! ’ LED:
] S
On-Chi Checksum -
Memors Accelerator PIO LED -
—

To build this example system, complete the following steps:

1.

In the System Contents tab in SOPC Builder, double-click On-Chip Memory
(RAM or ROM) in the On-Chip subfolder of the Memories and Memory
Controllers folder to add this component to your system.

In the On-Chip Memory (RAM or ROM) wizard, for Total memory size type 128
to change the memory size to 128 bytes. Click Finish to accept the other default
values.

To connect the on-chip memory to the master, click the open dot at the intersection
of the onchip_mem s1 Avalon slave port and the JTAG to Avalon Master Bridge
mast er port.

In the System Contents tab, double-click Checksum Accelerator in the Custom
Component folder to add this component to your system.

To connect the checksum accelerator Sl ave port, click on the open dot at the
intersection of the accelerator S| ave and the master mast er port.

To connect the checksum accelerator Mast er port, click on the open dot at the
intersection of the accelerator Mast er and the onchip_mem s1 port.

In the Base column, enter the base addresses in for the slaves in your system.
m Onchip_mem s1 port—0x00000080

m Accelerator Sl ave port—0x00000020

Click on the lock icon next to each address to lock these values.

Figure 2-6 illustrates the completed system.

© November 2009 Altera Corporation System Console User Guide

2-6

Chapter 2: System Console Examples
Checksum Example

Figure 2-6. Checksum Accelerator Module Connections

[
=

B E

el

=2 | Con...

Madule Mame Dezcription Claock Baze (=] IRG
= master ITAG to Avalon Master Bricdge
master Aovalon Memory Mapped Master clk
= led_pio PO (Parallel 1120
=1 Avwalon Memory Mapped Slave clk & 0x00000000 |0xO0000000E
= onchip_mem On-Chip Memory (RAM or ROM)
=1 Aoyvalon Memory Mapped Slave clk @ 0x00000020 |0x000000fF

[accelerator Checksum Accelerator

“Avalon Memary Mapp Ve
Master Avwalon Memory Mapped Master

System Console User Guide

10.
11.
12.

13.

14.

Save your system.

In the System Contents tab, click Next.

In the System Generation tab, click Generate.

On the Quartus II Processing menu, click Start Compilation.

When compilation completes, re-program your board by typing the following
command in the Nios II command shell:
ni os2-confi gure-sof jtag pio.sof «

Type syst em consol e « in the Nios II command shell to start the System

Console.

"=~ 1If you reprogram your board, you must start a new System Console to
receive the changes.sour

To run the checksum example, in the System Console, type:
source set_menory_and_run_checksumtcl «

Figure 2-7 shows the output from a successful run.

© November 2009 Altera Corporation

Chapter 2: System Console Examples
Nios Il Processor Example

Figure 2-7. System Console Output

[1 System Console

% source set_memory and run checksum.tcl

Onchip FAM walues out after £illing with data.

Ox5aSababa OxSaSaSaSa OxSaSaSaba OxSaSaSabSa Ox5SaSaSaSa
Ox5aSababa OxSaSaSaSa OxSaSaSaba OxSaSaSabSa Ox5SaSaSaSa
Ox5aSababa OxSaSaSaSa OxSaSaSaba OxSaSaSabSa Ox5SaSaSaSa
Ox5aSababa OxSaSaSaSa OxSaSaSaba OxSaSaSabSa Ox5SaSaSaSa

Starting Checksum operation.

Writing to address and length registers.
Address register walue = 0x00000050
Length register walue = 0x00000020

Writing clear to status register.
Writing clear to control register.

Writing GO to control register.
Checksum DONE bit set.
Result register walue [(non-inwverted) = OxaSal

Writing clear to status register.
Writing clear to control register.

Writing GO and INVEET to control register.
Checksum DONE bit set.
Result register walue [inwerted) = OxSaSa

Checksun example finished.

CEX

Ox5Sabababa OxSaSabaSa OxSaSabaSa OxSaSaSaba
Ox5Sabababa OxSaSabaSa OxSaSabaSa OxSaSaSaba
Ox5Sabababa OxSaSabaSa OxSaSabaSa OxSaSaSaba

15. You can change the value written into the RAM by changing the value given in the
fill_menory routine in the set_memory_and_run_checksum.tcl file. Save the
Tcl file after editing and rerun the command. (Because the system command uses
mast er _wri t e_32, if you use values that are less than 32 bits, they are filled with

leading 0Os.)

Nios Il Processor Example

In this example you program the Nios II processor on your board to run the count
binary software example that is included in the Nios II installation. This is a simple
program that, using an 8-bit variable, repeatedly counts from 0 to OxFE. The output of
this variable is displayed on the LEDs and the seven-segment display on your board.
After programming the Nios II processor from the System Console, you use the
System Console processor commands to start and stop the processor.

To run this example, complete the following steps:

1. Copy the standard directory for your development board to a new location.
(Altera recommends that you use a separate directory structure for each project.)
This project uses C:\Count_binary\standard\

2. Open the Quartus II project file for your board, <board_version>_standard.qpf.

© November 2009 Altera Corporation

System Console User Guide

2-8

Chapter 2: System Console Examples
Nios II Processor Example

System Console User Guide

On the Tools menu, click SOPC Builder.

In a Nios II command shell, change to the directory of your new project.

To program your board, type the following command in a Nios II command shell:
ni 0os2- confi gure-sof <board_versi on>_standard. sof ¢

In your Nios II command shell, type the following:

cd sof t war e_exanpl es/ app/ count _bi nary +

To build the executable and linkable format (ELF) file (.elf) for this application,
type the following:

$./create-this-app

For more information about creating Nios II applications, refer to the Using the Nios II
Software Build Tools chapter in the Nios II Software Developer’s Handbook.

8.

10.

11.

12.

13.

14.

15.

16.

Download the .elf file to your board by typing the following:
$ ni os2-downl oad -g count_binary.elf ¢
The seven-segment display and LEDs on your board provides a new light show.

Start the System Console by typing syst em consol e in your Nios Il command
shell.

Set the processor service path to the Nios II processor by typing the following
command:

set niosii_proc [lindex [get_service_paths processor] 0] +

Set the master service path to the Nios II processor by typing the following
command:

set niosii_master [lindex [get_service_paths master] 0] +
Open both services by typing the following commands:

open_servi ce processor $niosii_proc ¢
open_service naster $niosii_naster +

Stop the processor by typing the following command:
processor_stop $niosii_proc +

The LEDs and seven-segment display on your board freezes.
Start the processor by typing the following command:
processor_run $niosii_proc #

The LEDs and seven-segment display on your board resume their previous
activity.

Stop the processor by typing the following command:
processor_stop $niosii_proc ¢
Close the services by typing the following command:

cl ose_service master $niosii_master «
cl ose_service processor $niosii_proc +

The pr ocessor _st ep, processor _set _regi ster and
processor _get _regi st er provide additional control over the Nios II processor.

© November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Additional Information

Revision History

The table below displays the revision history for the chapters in this User Guide.

Date Version Changes Made
November 2009 1.3 m Added the design plugin commands.
March 2009 1.2 m Added sl d_I ock and sl d_unl ock commands
November 2008 1.1 m Added device service type commands.
m Expanded section explaining the system requirements for accessing the System Console.
m Added Figure 1-1 showing System Console connectivity.
May 2008 1.0 Initial Release.

How to GContact Altera

For the most up-to-date information about Altera® products, see the following table.

Contact Contact Method Address
Technical support Website www.altera.com/support
Technical training Website www.altera.com/training
Email custrain@altera.com
Altera literature services Email literature@altera.com
Non-technical support (General) Email nacomp@altera.com
(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.

Typographic Conventions

The following table shows the typographic conventions that this document uses.

Visual Cue

Bold Type with Initial Capital

Indicates command names, dialog box titles, dialog box options, and other GUI
Letters labels. For example, Save As dialog box.

bold type

Indicates directory names, project names, disk drive names, file names, file name
extensions, and software utility names. For example, \qdesigns directory, d: drive,
and chiptrip.gdf file.

Italic Type with Initial Capital Letters | Indicates document titles. For example, AN 519: Stratix IV Design Guidelines.

Italic type

Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name>and
<project name>.pof file.

© November 2009 Altera Corporation

System Console User Guide

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
mailto:literature@altera.com
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info-2

Additional Information
Typographic Conventions

Visual Cue

Initial Capital Letters

Indicates keyboard keys and menu names. For example, Delete key and the Options
menu.

“Subheading Title”

Quotation marks indicate references to sections within a document and titles of
Quartus Il Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, dat al,
t di, and i nput . Active-low signals are denoted by suffix n. For example,
resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, ¢: \ qdesi gns\tut ori al \ chi ptri p. gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESI GN), and logic function names (for
example, TRI).

1,2,3,and Numbered steps indicate a list of items when the sequence of the items is important,
a., b, c., andsoon such as the steps listed in a procedure.

[Bullets indicate a list of items when the sequence of the items is not important.
1= The hand points to information that requires special attention.

A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

A warning calls attention to a condition or possible situation that can cause you
injury.

The angled arrow instructs you to press Enter.

The feet direct you to more information about a particular topic.

System Console User Guide

© November 2009 Altera Corporation

	Contents
	1. System Console Commands
	Introduction
	Console Commands
	Programmable Logic Device (PLD) Commands
	Board Bring-Up Commands
	JTAG Debug Command
	Clock and Reset Signal Commands
	Avalon-MM and Interface Commands
	Processor Commands
	Bytestream Commands
	Design Plugin Commands
	Interactive Help

	2. System Console Examples
	Introduction
	LED Light Show Example
	JTAG Examples
	Verify JTAG Chain
	Verify Clock

	Checksum Example
	Nios II Processor Example

	Additional Information
	Revision History
	How to Contact Altera
	Typographic Conventions

