

Application Note Please read the Important Notice and Warnings at the end of this document 001-85951 Rev. AA

www.infineon.com page 1 of 229 2021-10-01

AN85951

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design

guide

About this document

Scope and purpose

The CAPSENSE™ design guide explains how to design capacitive touch sensing applications with the

CAPSENSE™ feature in PSoC™ 4 and PSoC™ 6 MCU device families. The CAPSENSE™ feature offers

unprecedented signal-to-noise ratio (SNR), best-in-class liquid tolerance, and a wide variety of sensors such as

buttons, sliders, touchpads, and proximity sensors. This design guide explains the CAPSENSE™ operation,

CAPSENSE™ design tools, performance tuning of the PSoC™ Creator and ModusToolbox™ CAPSENSE™

component and design considerations. This guide also introduces Fifth Generation CAPSENSE™ technology
which has several advantages over the previous generation devices.

Different device families are available with CAPSENSE™ feature. If you have not chosen a particular device, or
are new to capacitive sensing, see the Getting started with CAPSENSE™ design guide. It helps you

understand the advantages of CAPSENSE™ over mechanical buttons, CAPSENSE™ technology fundamentals,
and to select the right device for your application. It also directs you to the right documentation, kits, or tools

to help with your design.

Intended audience

This document is primarily intended for engineers who need to become familiar with the CAPSENSE™ design
principles of PSoC™ 4 and PSoC™ 6 MCU devices.

http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense

Application Note 2 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Table of contents

Table of contents

1 Introduction .. 7
1.1 Overview .. 7

1.2 CAPSENSE™ features ... 7
1.3 PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ Plus features ... 8
1.4 CAPSENSE™ design flow ... 9

2 CAPSENSE™ technology .. 13

2.1 CAPSENSE™ fundamentals .. 13

2.1.1 Self-capacitance sensing ... 14
2.1.2 Mutual-capacitance sensing .. 16
2.2 Capacitive touch sensing method .. 17

2.2.1 CAPSENSE™ sigma delta (CSD) .. 17

2.2.2 CAPSENSE™ crosspoint (CSX) .. 18
2.3 Signal-to-noise ratio (SNR) ... 19

2.4 CAPSENSE™ widgets ... 20
2.4.1 Buttons (zero-dimensional) ... 20
2.4.2 Sliders (one-dimensional) .. 23

2.4.3 Touchpads / Trackpads (two-dimensional) .. 24
2.4.4 Proximity (three-dimensional) .. 24
2.5 Liquid tolerance .. 25

2.5.1 Liquid tolerance for self-capacitance sensing .. 26

2.5.1.1 Effect of liquid droplets and liquid stream on a self-capacitance sensor................................. 26

2.5.1.2 Driven-shield signal and shield electrode .. 29

2.5.1.3 Guard sensor ... 29
2.5.2 Liquid tolerance for mutual-capacitance sensing .. 31
2.5.2.1 Effect of liquid droplets and liquid stream on a mutual-capacitance sensor 31

2.5.2.2 Using self-capacitance sensing for liquid tolerance of mutual-capacitance sensors 31
2.5.3 Effect of liquid properties on liquid-tolerance performance ... 33

3 PSoC™ 4 and PSoC 6™ MCU CAPSENSE™ ... 34

3.1 CAPSENSE™ generations in PSoC™ 4 and PSoC™ 6 .. 34

3.2 CAPSENSE™ CSD sensing method (third- and fourth-generation) .. 36
3.2.1 GPIO cell capacitance to current converter .. 37
3.2.2 IDAC sourcing mode ... 37
3.2.3 IDAC sinking mode ... 39

3.2.4 CAPSENSE™ clock generator ... 40

3.2.4.1 Sense clock .. 40

3.2.4.2 Modulator clock .. 40
3.2.5 Sigma-delta converter ... 41
3.2.6 Analog multiplexer (AMUX) .. 42

3.2.7 CAPSENSE™ CSD shielding .. 43
3.3 CAPSENSE™ CSX sensing method (third- and fourth-generation) .. 43

3.4 CAPSENSE™ CSD-RM sensing method (fifth-generation) .. 46
3.4.1 GPIO cell capacitance to charge converter ... 46
3.4.2 Capacitor DACs (CDACs) ... 47

3.4.3 CAPSENSE™ clock generator ... 48
3.4.3.1 Sense clock .. 48
3.4.3.2 Modulator clock .. 48

3.4.4 Ratiometric sensing technology .. 48

Application Note 3 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Table of contents

3.4.5 Analog multiplexer (AMUX) and control matrix (CTRLMUX) ... 49
3.4.6 CAPSENSE™ CSD-RM shielding .. 50

3.4.6.1 Active shielding ... 50
3.4.6.2 Passive shielding ... 50

3.5 CAPSENSE™ CSX-RM sensing method (fifth-generation) ... 51
3.5.1 Ratiometric sensing technology .. 53

3.6 Autonomous scanning .. 53
3.7 Usage of multiple channels ... 54

4 CAPSENSE™ design and development tools .. 55
4.1 PSoC™ Creator ... 55
4.1.1 CAPSENSE™ component .. 55

4.1.2 CapSense_ADC component .. 56

4.1.3 Tuner GUI .. 56

4.1.4 Example projects .. 56
4.2 ModusToolbox™ .. 57
4.2.1 CAPSENSE™ middleware ... 57
4.2.2 CAPSENSE™ configurator ... 57

4.2.3 CSDADC middleware .. 58
4.2.4 CSDIDAC middleware ... 58

4.2.5 CAPSENSE™ tuner .. 58
4.2.6 Example projects .. 58

4.3 Hardware kits .. 60

5 CAPSENSE™ performance tuning .. 62

5.1 Selecting between SmartSense and manual tuning .. 62
5.2 SmartSense ... 63

5.2.1 Overview ... 63

5.2.2 SmartSense full auto-tune ... 65

5.2.2.1 Tuning button widgets .. 65
5.2.2.2 Tuning slider widgets .. 67
5.2.2.3 Tuning proximity widgets ... 68

5.2.3 SmartSense hardware parameters-only mode... 68

5.2.4 SmartSense for initial tuning ... 68

5.3 Manual tuning .. 69
5.3.1 Overview ... 69

5.3.2 CSD sensing method (third- and fourth-generation) .. 71

5.3.2.1 Basics ... 71
5.3.2.2 Selecting CAPSENSE™ hardware parameters .. 76

5.3.2.3 Selecting CAPSENSE™ software parameters ... 82

5.3.2.4 Button widget tuning .. 88

5.3.2.5 Slider widget tuning .. 89

5.3.2.6 Touchpad widget tuning... 92
5.3.2.7 Proximity widget tuning ... 94
5.3.3 CSX sensing method (third- and fourth-generation) .. 95
5.3.3.1 Basics ... 95

5.3.3.2 Selecting CAPSENSE™ hardware parameters .. 96
5.3.3.3 Selecting CAPSENSE™ software parameters ... 98
5.3.3.4 Button widget tuning .. 98
5.3.3.5 Touchpad widget tuning... 100

5.3.4 CSD-RM sensing method (fifth-generation) .. 104
5.3.4.1 Basics ... 104

Application Note 4 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Table of contents

5.3.4.2 Selecting CAPSENSE™ hardware parameters .. 111
5.3.4.3 Selecting CAPSENSE™ software parameters ... 119

5.3.4.4 Configuring autonomous scan ... 120
5.3.4.5 Multi-channel scanning .. 123

5.3.4.6 Button widget tuning .. 124
5.3.4.7 Slider widget tuning .. 125

5.3.4.8 Touchpad widget tuning... 125
5.3.4.9 Proximity widget example .. 125

5.3.5 CSX-RM sensing method (Fifth-generation) .. 126
5.3.5.1 Basics ... 126
5.3.5.2 Selecting CAPSENSE™ hardware parameters .. 128

5.3.5.3 Selecting CAPSENSE™ software parameters ... 133

5.3.5.4 Configuring autonomous scan ... 133

5.3.5.5 Multi-channel scanning .. 133
5.3.5.6 Button widget tuning .. 133
5.3.5.7 Touchpad widget tuning... 133
5.3.6 Manual tuning trade-offs ... 135

5.3.6.1 Reliability ... 136
5.3.6.2 Power consumption and response time .. 136

5.3.7 Tuning debug FAQs .. 137
5.3.7.1 The tuner does not communicate with the device .. 137

5.3.7.2 I am unable to update parameters on my device through the tuner 137

5.3.7.3 I can connect to the device but I do not see any raw counts .. 137

5.3.7.4 Difference counts only change slightly (10 to 20 counts)
when a finger is placed on the sensor .. 137

5.3.7.5 After tuning the system, I see large amount of radiated noise during testing 138

5.3.7.6 My scan time no longer meets system requirements after manual tuning 138

5.3.7.7 I am unable to calibrate my system to 85 percent ... 138
5.3.7.8 My slider centroid response is non-linear .. 139
5.3.7.9 My slider segments have a large variation of CP... 139

5.3.7.10 Raw counts show a level-shift or increased noise when GPIOs are toggled 140

5.3.7.11 I am getting a low SNR .. 142

5.3.7.12 I am observing a low CM for my CSX button .. 142

6 Gesture in CAPSENSE™ ... 145

6.1 Touch gesture support .. 145

6.2 Gesture groups .. 145
6.3 One-finger gesture implementation ... 146

6.3.1 Tuning the widget .. 146

6.3.2 Selecting predefined gesture ... 146

6.3.3 Firmware implementation with timestamp .. 147

6.3.4 Tuning gesture parameters ... 147
6.3.4.1 Using tuner GUI for tuning gesture parameters ... 148
6.3.4.2 Click ... 149
6.3.4.3 Scroll .. 151

6.3.4.4 One-finger flick .. 153
6.4 Two-finger gesture implementation .. 153
6.5 Advanced filters for gestures .. 154

7 Design considerations.. 155

7.1 Firmware .. 155
7.1.1 Low-power design .. 156

Application Note 5 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Table of contents

7.2 Sensor construction .. 158
7.3 Overlay selection ... 159

7.3.1 Overlay material ... 159
7.3.2 Overlay thickness ... 160

7.3.3 Overlay adhesives .. 161
7.4 PCB layout guidelines ... 161

7.4.1 Sensor CP .. 161
7.4.2 Board layers .. 161

7.4.3 Button design ... 162
7.4.3.1 Self-capacitance button design.. 162
7.4.3.2 Mutual-capacitance button design .. 163

7.4.4 Slider design ... 169

7.4.4.1 Slider-segment shape, width, and Air gap ... 170

7.4.4.2 Dummy segments at the ends of a slider ... 174
7.4.4.3 Deciding slider dimensions... 175
7.4.4.4 Routing slider segment trace.. 176
7.4.4.5 Slider design with LEDs ... 176

7.4.5 Sensor and device placement ... 177
7.4.6 Trace length and width .. 177

7.4.7 Trace routing .. 177
7.4.8 Crosstalk solutions ... 179

7.4.9 Vias .. 179

7.4.10 Ground plane .. 180

7.4.10.1 Using packages without E-pad ... 181
7.4.10.2 Using packages with E-pad ... 182

7.4.10.3 Using PSoC™ 4 Bluetooth® LE devices .. 182

7.4.11 Power supply layout recommendations ... 183

7.4.12 Layout guidelines for liquid tolerance .. 184
7.4.12.1 Layout guidelines for shield electrode ... 184
7.4.12.2 Layout guidelines for guard sensor .. 186

7.4.12.3 Liquid tolerance with ground ring .. 187

7.4.13 Schematic rule checklist .. 187

7.4.13.1 External capacitors pin selection ... 188
7.4.13.2 Sensor pin selection .. 189

7.4.14 Layout rule checklist .. 192

7.5 Noise in CAPSENSE™ system... 194
7.5.1 Finger injected noise .. 194

7.5.1.1 Recommendations to reduce the finger injected noise .. 195

7.5.2 VDDA noise.. 196

7.5.2.1 Recommendations to reduce the VDDA noise ... 196

7.5.3 External noise ... 196
7.5.3.1 ESD protection .. 196
7.5.3.2 Electromagnetic compatibility (EMC) considerations ... 198
7.6 Effect of grounding .. 209

7.6.1 CSX method .. 209
7.6.1.1 CbodyDG>>Cfs ... 210
7.6.1.2 CbodyDG<<Cfs ... 210
7.6.2 CSD method .. 211

7.6.2.1 AC / DC-powered application ... 211
7.6.2.2 Battery-powered application ... 212

Application Note 6 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Table of contents

8 CAPSENSE™ Plus ... 213

9 Resources ... 217

9.1 Website .. 217
9.2 Device datasheet ... 217

9.3 Component datasheet / middleware document ... 217
9.4 Technical reference manual ... 217

9.5 Development kits .. 217
9.6 PSoC™ Creator ... 217

9.7 ModusToolbox™ .. 217
9.8 Application notes .. 218
9.9 Design support .. 218

10 Glossary ... 219

Revision history... 225

Application Note 7 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Introduction

1 Introduction

1.1 Overview

Capacitive touch sensors are user interface devices that use human body capacitance to detect the presence of

a finger on or near a sensor. CAPSENSE™ solutions bring elegant, reliable, and easy-to-use capacitive touch
sensing functionality to your product.

This design guide focuses on the CAPSENSE™ feature in the PSoC™ 4 and PSoC™ 6 MCU families of devices.

These are true programmable embedded system-on-chip, integrating configurable analog and digital
peripheral functions, memory, radio, and a microcontroller on a single chip. These devices are highly flexible
and can implement many functions such as ADC, DAC, and Bluetooth® LE in addition to CAPSENSE™, which

accelerates time-to-market, integrates critical system functions, and reduces overall system cost.

This guide assumes that you are familiar with developing applications for PSoC™ 4 and PSoC™ 6 MCU using the
PSoC™ Creator integrated design environment (IDE). If you are new to PSoC™ 4, see AN79953 - Getting started

with PSoC™ 4 or AN92167 - Getting started with PSoC™ 4 Bluetooth® LE. If you are new to PSoC™ 6 MCU, see
AN221774 – Getting started with PSoC™ 6 MCU and AN210781 - Getting started with PSoC™ 6 MCU with
Bluetooth® LE connectivity. If you are new to PSoC™ Creator, see the PSoC™ Creator home page.

If you are new to ModusToolbox™, see ModusToolbox™ IDE quick start guide.

This design guide helps you understand:

• CAPSENSE™ technology in PSoC™ 4 and PSoC™ 6 MCU

• Design and development tools available for PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™

• CAPSENSE™ PCB layout guidelines for PSoC 4 and PSoC 6 MCU

• Performance tuning of PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ component

• Applications using CAPSENSE™ Plus features such as motor control systems and induction cookers

1.2 CAPSENSE™ features

CAPSENSE™ in PSoC™ 4 and PSoC™ 6 MCU has the following features:

• Supports self-capacitance (CSD) and mutual-capacitance (CSX) based touch sensing on all CAPSENSE™-

capable GPIO pins1.

• Provides the best in Class SNR allowing high sensitivity that provides high range proximity sensing (up to a

30-cm proximity-sensing distance) and liquid-tolerant operation (see Liquid tolerance)

• High-performance sensing across a variety of overlay materials and varied thickness (see CAPSENSE™

fundamentals, Overlay material, and Overlay thickness)

• SmartSense auto-tuning technology

• Pseudo random sequence (PRS) clock source, supports spread spectrum and programmable resistance

switches for lower electromagnetic interference (EMI)

• Low power consumption with as low as 1.71 V operation and as low as 150 nA current consumption in
hibernate mode

1 To achieve the best CAPSENSE™ performance, follow the recommendations in Sensor pin selection section.

http://www.cypress.com/?rID=78695&source=an85951
http://www.cypress.com/?rID=78695&source=an85951
http://www.cypress.com/?rID=102504
http://www.cypress.com/an221774
http://www.cypress.com/an210781
http://www.cypress.com/an210781
http://www.cypress.com/an210781
http://www.cypress.com/?id=2494&source=an85951
http://www.cypress.com/ModusToolboxQSG

Application Note 8 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Introduction

The PSoC™ 4100S Max device introduces Fifth-Generation CAPSENSE™ technology (Ratiometric sensing) and
has the following additional features when compared to older generations.

• Improved SNR: Fifth-Generation CAPSENSE™ technology (Ratiometric sensing technology) significantly
improves noise performance compared to previous generation devices.

• Improved refresh rate: The better sensitivity of multi sense converter (MSC) requires less time to get

similar signal as in previous generation therefore is able to achieve higher refresh rate. The two
independent MSC blocks which can scan the sensors in parallel improve the refresh rate further especially in
use case where large numbers of sensors to be scanned.

• Improved CPU bandwidth: Scan supported in both CPU mode and DMA mode. CPU mode is conventional
interrupt driven mode, while DMA mode is capable of autonomous scanning which reduces the CPU

bandwidth requirement to 18% compared to previous generation.

• Improved noise immunity: Rail to rail swing is used as sense voltage, this provides maximum sense voltage

and provides better immunity. In Fifth-Generation CAPSENSE™ technology full wave differential sensing is
used for self-capacitance sensing and this cancels out noise induced from external environment to the

sensor routings. This sensing technology is also better immune to power supply (VDD) noise.

1.3 PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ Plus features

You can create PSoC™ 4 CAPSENSE™ Plus applications that feature capacitive touch sensing and additional
system functionality. The key features of these devices, in addition to CAPSENSE™ are:

• Arm® Cortex®-M0/M0+ CPU with single cycle multiply delivering up to 43 DMIPS at 48 MHz

• 1.71 V – 5.5 V operation over –40 to 85 °C ambient

• Up to 128 KB of flash (CM0+ has > 2X code density over 8-bit solutions)

• Up to 16 KB of SRAM

• Up to 94 programmable GPIOs

• Independent center-aligned PWMs with complementary dead-band programmable outputs, synchronized

ADC operation (ability to trigger the ADC at a customer-specifiable time in the PWM cycle), and synchronous

refresh (ability to synchronize PWM duty cycle changes across all PWMs to avoid anomalous waveforms)

• Comparator-based triggering of PWM Kill signals (to terminate motor-driving when an over-current

condition is detected)

• 12-bit 1 Msps ADC including sample-and-hold (S&H) capability with zero-overhead sequencing allowing the

entire ADC bandwidth to be used for signal conversion and none used for sequencer overhead.

• Opamps with comparator mode and SAR input buffering capability

• Segment LCD direct drive that supports up to four commons

• SPI/UART/I2C serial communication channels

• Bluetooth® LE communication compliant with version 4.0 and multiple features of version 4.1

• Programmable logic blocks, each having eight macrocells and a cascadable data path, called universal
digital blocks (UDBs) for efficient implementation of programmable peripherals (such as I2S)

• Controller area network (CAN)

• Fully-supported PSoC™ Creator design entry, development, and debug environment providing:

− Design entry and build (comprehending analog routing)

− Components for all fixed-function peripherals and common programmable peripherals

− Documentation and training modules

• Support for porting builds to MDK Arm® environment (previously known as RealView) and others

• Support for Eclipse integrated development environment (IDE) for ModusToolbox™

Application Note 9 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Introduction

The main features of PSoC™ 6 MCU device, in addition to CAPSENSE™ are:

• Single CPU devices (Arm® Cortex® -M4), dual CPU devices (Arm® Cortex®-M4 and Cortex®-M0+). Support for
inter-processor communication in hardware.

• 1.71 V - 3.6 V device operating voltage with user selectable core logic operation at either 1.1 V or 0.9 V

• Up to 2 MB of flash memory and up to 1 MB of SRAM

• Up to 78 GPIOs that can be used for analog, digital, CAPSENSE™, or segment LCD functions

• Programmable analog blocks: Two opamps, configurable PGAs, comparators, 12-bit 1 Msps SAR ADC, 12-bit
voltage mode DAC

• Programmable digital blocks, communication interfaces

• 12 UDBs, 32 TCPWMs configurable as 16-bit/32-bit timer, counter, PWM, or quadrature decoder

• Up to 13 serial communication block (SCB) configurable as I2C, SPI, or UART interfaces. See the Device
datasheet for more details.

• Audio subsystem with one I2S interface and two PDM channels

• SMIF interface with support for execute-in-place from external quad SPI flash memory and on-the-fly

encryption and decryption.

• Bluetooth® Smart connectivity with Bluetooth® LE 5.0 (applicable only to PSoC™ 6 MCU with Bluetooth® LE
family of devices)

See AN64846 - Getting started with CAPSENSE™ to select an appropriate CAPSENSE™ device based on your

requirements.

1.4 CAPSENSE™ design flow

Figure 1 illustrates the product design cycle with capacitive sensing; the information in this guide is highlighted

in green. provides links to the supporting documents for each of the numbered tasks in Figure 1.

http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense

Application Note 10 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Introduction

10. System Integration and Build

Preproduction Prototype

11. Design Validation: Test and Evaluate System

Functionality and CAPSENSE Performance

Is Performance

Satisfactory?

12. Production

Yes

No

= Topics covered in this document

1. Understanding CAPSENSE

Technology

4.

CAPSENSE

Schematic

Design

Design for CAPSENSE

8 .

3. Feasibility Study : Device Selection

Based on Required Functionality

2. Specify System Requirements and

Characteristics

= Topics covered in other documents

5.

CAPSENSE

Layout and

Mechanical

Design

6.

Component

Configuration

7.

CAPSENSE

Tuning

Mechanical and PCB Design

9. Programming PSoC

=
Not covered in any document. Users should

define the process based on application

8.

Firmware

Design

PSoC Creator Project Creation

Figure 1 CAPSENSE™ product design flow

Application Note 11 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Introduction

 Supporting documentation

Steps in flowchart
Supporting documentation

Name Chapter

1. Understanding

CAPSENSE™
CAPSENSE™ design guide (This document)

Getting started with CAPSENSE™

Chapter 2 and Chapter 3

–

2. Specify requirements
Getting started with CAPSENSE™

–

3. Feasibility study
PSoC™ 4 datasheet

PSoC™ 4 Bluetooth® LE datasheet

PSoC™ 6 MCU datasheet

–

AN64846 – Getting started with CAPSENSE™

design guide

AN79953 – Getting started with PSoC™ 4

AN91267 – Getting started with PSoC™ 4

Bluetooth® LE

AN221774 – Getting started with PSoC™ 6 MCU

–

4. Schematic design CAPSENSE™ design guide (This document)
Chapter 7

5. Layout design CAPSENSE™ design guide (This document)
Chapter 7

6. Component

configuration

PSoC™ CAPSENSE™ Component datasheet /

middleware

–

CAPSENSE™ design guide (This document)
Chapter 5

7. Performance tuning CAPSENSE™ design guide (This document)
Chapter 5

8. Firmware design PSoC™ Component datasheet / middleware –

PSoC™ Creator

Example projects

–

http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
http://www.cypress.com/?id=4749&rtID=107&source=an85951
http://www.cypress.com/psoc4ble/
http://www.cypress.com/psoc6ds
http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
http://www.cypress.com/?rID=78695&source=an85951
http://www.cypress.com/?rID=102504
http://www.cypress.com/?rID=102504
http://www.cypress.com/an221774

Application Note 12 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Introduction

Steps in flowchart
Supporting documentation

Name Chapter

Download ModusToolbox™ here.

See the ModusToolbox™ related documents:

ModusToolbox™ release notes

ModusToolbox™ user guide

ModusToolbox™ quick start guide

ModusToolbox™ CAPSENSE™ configurator guide

ModusToolbox™ CAPSENSE™ tuner guide

PSoC™ Creator to ModusToolbox™ porting guide

9. Programming PSoC™
PSoC™ Creator user guide for in-IDE programming

PSoC™ Programmer home page and MiniProg3

user guide for standalone programming

–

10. Prototype – –

11. Design validation CAPSENSE™ design guide (This document)
Chapter 5

12. Production – –

http://www.cypress.com/modustoolbox
http://www.cypress.com/ModusToolboxReleaseNotes
http://www.cypress.com/ModusToolboxUserGuide
http://www.cypress.com/ModusToolboxQSG
http://www.cypress.com/ModusToolboxCapSenseConfig
http://www.cypress.com/ModusToolboxCapSenseTuner
http://www.cypress.com/PSoCCreatortoModusToolbox
http://www.cypress.com/documentation/other-resources/psoc-creator-user-guide
http://www.cypress.com/documentation/software-and-drivers/psoc-programmer-324
http://www.cypress.com/file/44091/download
http://www.cypress.com/file/44091/download

Application Note 13 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

2 CAPSENSE™ technology

Capacitive touch sensing technology measures changes in capacitance between a plate (the sensor) and its

environment to detect the presence of a finger on or near a touch surface.

2.1 CAPSENSE™ fundamentals

A typical CAPSENSE ™ sensor consists of a copper pad of proper shape and size etched on the surface of a PCB.
A nonconductive overlay serves as the touch surface for the button, as Figure 2 shows.

Figure 2 Capacitive touch sensor

PCB traces and vias connect the sensor pads to PSoC™ GPIOs that are configured as CAPSENSE™ sensor pins. As

Figure 3 shows, the self-capacitance of each electrode is modeled as CSX and the mutual capacitance between
electrodes is modeled as CMX. CAPSENSE™ circuitry internal to the PSoC™ converts these capacitance values

into equivalent digital counts (see Chapter 3 for details). These digital counts are then processed by the CPU to

detect touches.

CAPSENSE™ also requires external capacitor CMOD or CINT for self-capacitance sensing and mutual-capacitance

sensing. For third- and fourth-generation CAPSENSE™ architecture, a single CMOD capacitor is required for self-

capacitance sensing and CINTA and CINTB capacitors for mutual-capacitance sensing. If shield electrode is

implemented for liquid tolerance, or for large proximity sensing distance, an additional CTANK capacitor may be
required. For Fifth-Generation CAPSENSE™ architecture, two CMOD capacitors are required for both self-
capacitance and mutual-capacitance sensing for each channel. These external capacitors are connected

between a dedicated GPIO pin and ground. Table 34 list the recommended values of the external capacitors.

Application Note 14 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

Self-Cap

Sensor

Shield

Mutual Cap

Sensor

CS1

CSHIELD

CM

CS2

CS3

GPIO

GPIO

GPIO

GPIO

CMOD CTANK CINTA CINTB

External Capacitors

PSoC

CAPSENSE

Delta-Sigma

Modulator

Slope ADC*

Raw Counts

ADC Counts

Tx

Rx

* ADC is supported only in PSoC 4-S series,

PSoC 6 MCU and PSoC 4100PS devices

AMUXBUS

Self Capacitance

Mutual Capacitance

Figure 3 PSoC™ device, sensors, and external capacitors

The capacitance of the sensor in the absence of a touch is called the parasitic capacitance, CP. CP results from
the electric field between the sensor (including the sensor pad, traces, and vias) and other conductors in the

system such as the ground planes, traces, and any metal in the product’s chassis or enclosure. The GPIO and

internal capacitances of PSoC™ also contribute to the parasitic capacitance. However, these internal

capacitances are typically very small compared to the sensor capacitance.

2.1.1 Self-capacitance sensing

Figure 4 shows how a GPIO pin is connected to a sensor pad by traces and vias for self-capacitance sensing.
Typically, a ground (GND) hatch surrounds the sensor pad to isolate it from other sensors and traces. Although

Figure 4 shows some field lines around the sensor pad, the actual electric field distribution is very complex.

Figure 4 Parasitic capacitance

Application Note 15 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

When a finger is present on the overlay, the conductive nature and large mass of the human body forms a
grounded, conductive plane parallel to the sensor pad, as Figure 5 shows.

Figure 5 Finger capacitance

This arrangement forms a parallel plate capacitor. The capacitance between the sensor pad and the finger is
shown in Equation 1.

Equation 1. Finger capacitance

CF =
ε0 εr A

d

Where:

ε0 = Free space permittivity

εr = Relative permittivity of overlay

A = Area of finger and sensor pad overlap

d = Thickness of the overlay

CF = Finger capacitance.

CP and CF are parallel to each other because both represent the capacitance between the sensor pin and

ground. Therefore, the total capacitance CS of the sensor, when the finger is present on the sensor, is the sum of

CP and CF.

Equation 2. Total sense capacitance when finger is present on sensor

CS = CP + CF

In the absence of touch, CS is equal to CP.

PSoC™ converts the capacitance CS into equivalent digital counts called raw counts. Because a finger touch

increases the total capacitance of the sensor pin, an increase in the raw counts indicates a finger touch. Refer to
the CSD specification in Device datasheet / Component datasheet / middleware document to learn about
the supported CP range for a given device with which the recommended SNR can be achieved.

Application Note 16 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

2.1.2 Mutual-capacitance sensing

Figure 6 shows the button sensor layout for mutual-capacitance sensing. Mutual-capacitance sensing
measures the capacitance between two electrodes, transmit (Tx) electrode and receive (Rx) electrode.

In a mutual-capacitance sensing system, a digital voltage signal switching between VDDIO2 or VDDD3 (if VDDIO is
not supported by the device) and GND is applied to the Tx pin and the amount of charge received on the Rx pin

is measured. The amount of charge received on the Rx electrode is directly proportional to the mutual-
capacitance (CM) between the two electrodes.

When a finger is placed between the Tx and Rx electrodes, the mutual-capacitance decreases to C1
M, as shown

in Figure 7. Because of the reduction in the mutual-capacitance, the charge received on the Rx electrode also

decreases. The CAPSENSE™ system measures the amount of charge received on the Rx electrode to detect a

touch /no touch condition.

a) Top View b) Side View

Rx

Electrode

Tx Electrode

Overlay

RxTx Tx

RX Electrode
PCB

CM CM

Figure 6 Mutual-capacitance sensing working

Overlay

RxTx Tx

RX Electrode
PCB

C
1

M C
1

M

Figure 7 Mutual-capacitance with finger touch

3 VDDD is the device power supply for digital section.

Application Note 17 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

2.2 Capacitive touch sensing method

PSoC™ uses patented capacitive touch-sensing method CAPSENSE™ sigma delta (CSD) for self-capacitance

sensing and CAPSENSE™ crosspoint (CSX) for mutual-capacitance scanning. The CSD and CSX touch sensing
methods provide the industry’s best-in-class Signal-to-noise ratio (SNR). These sensing methods are a

combination of hardware and firmware techniques.

2.2.1 CAPSENSE™ sigma delta (CSD)

Figure 8 shows a simplified block diagram of the CSD method.

In CSD, each GPIO has a switched-capacitance circuit that converts Cs into an equivalent current. An analog
MUX (AMUX) selects one of the sensor currents and feeds it into the current to digital converter. The current to

digital converter is similar to a delta sigma ADC. The output count of the current to digital converter, known as

raw count, is a digital value that is proportional to the self-capacitance between the electrodes.

Equation 3. Raw count and sensor capacitance relationship in CSD

raw count = GCSD CS

Where,

GCSD = Capacitance to digital conversion gain of CSD

CS = Self-capacitance of the electrode

PSoC
GPIO Pin

GPIO Pin

GPIO Pin

CS1

CS2

CSN

Sensor 1

Sensor 2

Sensor N

Analog
Multiplexer Capacitance-To-

Digital Converter
Firmware

Processing

IS1

IS2

ISN

Raw Count Touch Status

Figure 8 Simplified diagram of CSD method

Figure 10 illustrates a plot of raw count over time. When a finger touches the sensor, the CS increases from CP to
CP + CF, and the raw count increases. By comparing the change in raw count to a predetermined threshold, logic

in firmware decides whether the sensor is active (finger is present).

Application Note 18 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

2.2.2 CAPSENSE™ crosspoint (CSX)

Figure 9 shows the simplified block diagram of the CSX method.

Sensor N

PSoC GPIO Pin

Capacitance-To-
Digital Converter

(CSX)

Firmware
Processing

RawcountCounter
Touch Status

Tx Signal
GPIO Pin

CS1
CM1

CS

Sensor 1

VTX

Tx Pin

Rx Pin

GPIO Pin

CSN

CMN

Rx Pin

Analog
Multiplexer

Figure 9 Simplified diagram of CAPSENSE™ crosspoint (CSX) method

With CSX, a voltage on the Tx electrode couples charge on to the RX electrode. This charge is proportional to
the mutual capacitance between the Tx and Rx electrodes. An analog MUX then selects one of the Rx electrodes

and feeds it into the current to digital converter.

The output count of the current to digital converter, 𝐑𝐚𝐰𝐜𝐨𝐮𝐧𝐭𝐂𝐨𝐮𝐧𝐭𝐞𝐫, is a digital value that is proportional to
the mutual-capacitance between the Rx and Tx electrodes as shown in Equation 4.

Equation 4. Raw count and sensor capacitance relationship in CSX

RawcountCounter = GCSX CM

Where,

GCSX = Capacitance to digital conversion gain of mutual capacitance method

CM = Mutual-capacitance between two electrodes

Figure 10 illustrates a plot of raw count over time. When a finger touches the sensor, CM decreases from CM to

C1
M (see Figure 7) hence the counter output decreases. The firmware normalizes the raw count such that the

raw counts go high when CM decreases. This maintains the same visual representation of raw count between

CSD and CSX methods. By comparing the change in raw count to a predetermined threshold, logic in firmware
decides whether the sensor is active (finger is present). The normalized inverted raw count is computed using

Equation 15.

Application Note 19 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

Figure 10 Raw count versus time

For an in-depth discussion of the PSoC™ 4 and PSoC™ 6 CAPSENSE™ CSD and CSX blocks, see chapter PSoC™ 4

and PSoC 6™ MCU CAPSENSE™.

2.3 Signal-to-noise ratio (SNR)

In practice, the raw counts vary due to inherent noise in the system. CAPSENSE™ noise is the peak-to-peak
variation in raw counts in the absence of a touch, as Figure 11 shows.

A well-tuned CAPSENSE system reliably discriminates between the ON and OFF states of the sensors. To
achieve good performance, the CAPSENSE™ signal must be significantly larger than the CAPSENSE™ noise. SNR

is defined as the ratio of CAPSENSE™ signal to CAPSENSE™ noise is the most important performance parameter

of a CAPSENSE™ sensor.

OFF OFF

ON

Signal

Noise

Figure 11 SNR

In this example, the average level of raw count in the absence of a touch is 5925 counts. When a finger is placed
on the sensor, the average raw count increases to 6060 counts, which means the signal is 6060 – 5925 = 135
counts. The minimum value of the raw count in the OFF state is 5912 and the maximum value is 5938 counts.

Therefore, the CAPSENSE™ noise is 5938 – 5912 = 26 counts. This results in an SNR of 135 / 26 = 5.2.

Application Note 20 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

The minimum SNR recommended for a CAPSENSE™ sensor is 5. This 5:1 ratio comes from best practice
threshold settings, which enable enough margin between signal and noise in order to provide reliable ON/OFF

operation.

2.4 CAPSENSE™ widgets

CAPSENSE™ widgets consist of one or more CAPSENSE™ sensors, which as a unit represent a certain type of
user interface. CAPSENSE™ widgets are broadly classified into four categories – buttons (zero-dimensional),
sliders (one-dimensional), touchpads/trackpads (two-dimensional), and proximity sensors (three-

dimensional). Figure 12 shows button, slider, and proximity sensor widgets. This section explains the basic

concepts of different CAPSENSE™ widgets. For a detailed explanation of sensor construction, see Sensor
construction.

Button Sensor Slider Sensor Proximity Sensor

Figure 12 Several types of widgets

2.4.1 Buttons (zero-dimensional)

CAPSENSE™ buttons replace mechanical buttons in a wide variety of applications such as home appliances,

medical devices, white goods, lighting controls, and many other products. It is the simplest type of CAPSENSE™
widget, consisting of a single sensor. A CAPSENSE™ button gives one of two possible output states: active

(finger is present) or inactive (finger is not present). These two states are also called ON and OFF states,
respectively.

For the self-capacitance (CSD) sensing method, a simple CAPSENSE™ button consists of a circular copper pad

connected to a PSoC™ GPIO with a PCB trace. The CAPSENSE™ button is surrounded by grounded copper hatch
that isolates it from other buttons and traces. A circular gap separates the button pad and the ground hatch.

Each button requires one PSoC™ GPIO. These buttons can be constructed using any conductive material on a

non-conductive substrate; for example, indium tin oxide on a glass substrate, or silver ink on a non-conductive
film. Even metallic springs can be used as button sensors; see Sensor construction for more details.

GND

GPIO Pin0

Button0 Button1 Button2

GPIO Pin1 GPIO Pin2

Figure 13 Simple CAPSENSE™ buttons

For the mutual-capacitance (CSX) sensing method, each button requires one GPIO pin configured as Tx
electrode and one GPIO pin configured as Rx electrode. The Tx can be shared across multiple buttons, as shown
in Figure 14.

Application Note 21 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

GND

Rx0 Rx1 Rx2Tx0

Button0 Button1 Button2

Figure 14 Simple CAPSENSE™ buttons for mutual-capacitance sensing method

If the application requires many buttons (for example in a calculator keypad or a QWERTY keyboard), you can

arrange the CAPSENSE™ buttons in a matrix, as Figure 15 shows. This allows a design to have multiple buttons

per GPIO. For example, the 16-button design in Figure 15 requires only eight GPIOs.

Figure 15 Matrix buttons based on CSD

A matrix button design has two groups of capacitive sensors: row sensors and column sensors. The matrix

button architecture can be used for both self-capacitance (CSD) and mutual-capacitance (CSX) methods.

In CSD mode, each button consists of a row sensor and a column sensor, as Figure 15 shows. When a button is
touched, both row and column sensors of that button become active. The CSD-based matrix button should be

used only if the user is expected to touch one button at a time. If the user touches more than one diagonally
opposite buttons, the finger location cannot be resolved as Figure 16 shows. This effect is called as ghost

effect, which is considered an invalid condition.

Application Note 22 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

Figure 16 Ghost effect in matrix button based on CSD

Mutual-capacitance is the recommended sensing method for matrix buttons because this method is not

affected from the ghost touch phenomena and provides better SNR for high Cp sensors. This is because it
senses mutual-capacitance formed at each intersection rather than sensing rows and columns as shown in
Figure 17. Applications that require simultaneous sensing of multiple buttons, such as a keyboard with Shift,

Ctrl, and Alt keys can use CSX sensing method or you should design the Shift, Ctrl, and Alt keys as individual

CSD buttons.

Figure 17 Matrix button based on CSX

Note: Scanning a matrix keypad using CSX sensing method may require a longer overall scan time than
the CSD sensing method. This is because the CSD sensing method scans rows and columns as

sensors, while the CSX sensing method scans each intersection as a sensor.

Application Note 23 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

2.4.2 Sliders (one-dimensional)

Sliders are used when the required input is in the form of a gradual increment or decrement. Examples include
lighting control (dimmer), volume control, graphic equalizer, and speed control. Currently, the CAPSENSE™

Component in PSoC™ Creator and ModusToolbox™ supports only self-capacitance-based sliders. Mutual
capacitance-based sliders will be supported in future version of component.

A slider consists of a one-dimensional array of capacitive sensors called segments, which are placed adjacent to
one another. Touching one segment also results in partial activation of adjacent segments. The firmware
processes the raw counts from the touched segment and the nearby segments to calculate the position of the
geometric center of the finger touch, which is known as the centroid position.

The actual resolution of the calculated centroid position is much higher than the number of segments in a

slider. For example, a slider with five segments can resolve at least 100 physical finger positions. This high

resolution gives smooth transitions of the centroid position as the finger glides across a slider.

In a linear slider, the segments are arranged inline, as Figure 18 shows. Each slider segment connects to a
PSoC™ GPIO. A zigzag pattern (double chevron) is recommended for slider segments. This layout ensures that

when a segment is touched, the adjacent segments are also partially touched, which aids estimation of the
centroid position.

Area contracted by the finger

 GND 0 1 2 3 4 5 GND

PSoC

G
P

IO

G
P

IO

G
P

IO

Figure 18 Linear slider

Radial sliders are similar to linear sliders except that radial sliders are continuous. Figure 19 shows a typical

radial slider.

Area contacted by finger

Figure 19 Radial slider

Application Note 24 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

2.4.3 Touchpads / Trackpads (two-dimensional)

A touchpad (also known as trackpad) has two linear sliders arranged in an X and Y pattern, enabling it to locate
a finger’s position in both X and Y dimensions. Figure 20 shows a typical arrangement of a touchpad sensor.

Similar to the matrix buttons, touchpads can also be sensed using either CSD or CSX sensing method.

CSD-based touchpads suffer from ghost touches, so it supports only single-point touch applications.

CSX touchpads can support multi-point touch applications, but these may need more scanning time compared

to CSD touchpad because this method scans each intersection rather than rows and columns.

Figure 20 Touchpad sensor arrangement

2.4.4 Proximity (three-dimensional)

Proximity sensors detect the presence of a hand in the three-dimensional space around the sensor. However,
the actual output of the proximity sensor is an ON/OFF state similar to a CAPSENSE™ button. Proximity sensing
can detect a hand at a distance of several centimeters to tens of centimeters depending on the sensor

construction. Self capacitance is the recommended method of sensing for a proximity application.

Proximity sensing requires electric fields that are projected to much larger distances than buttons and sliders.

This demands a large sensor area. However, a large sensor area also results in a large parasitic capacitance CP,
and detection becomes more difficult. This requires a sensor with high electric field strength at large distances

while also having a small area. Figure 21 shows a proximity sensor using a trace with a thickness of 2-3 mm

surrounding the other sensors.

Proximity Sensor

Figure 21 Proximity sensor

You can also implement a proximity sensor by ganging other sensors together. This is accomplished by

combining multiple sensor pads into one large sensor using firmware. The disadvantage of this method is high
parasitic capacitance. See the Component datasheet / middleware document for details on maximum
parasitic capacitance supported by a given device.

See AN92239 proximity sensing with CAPSENSE™ and the proximity sensing section in Getting started with
CAPSENSE™ design guide to learn more about proximity sensors.

http://www.cypress.com/documentation/application-notes/an92239-proximity-sensing-capsense
http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense

Application Note 25 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

2.5 Liquid tolerance

Capacitive sensing is used in a variety of applications such as home appliances, automotive, and industrial
applications. These applications require robust capacitive-sensing operation even in the presence of mist,

moisture, water, ice, humidity, or other liquids. In a capacitive-sensing application design, false sensing of
touch or proximity detection may happen due to the presence of a film of liquid or liquid droplets on the sensor
surface, due to the conductive nature of some liquids. CSD sensing method can compensate for variation in raw
count due to these causes and provide a robust, reliable, capacitive sensing application operation.

Figure 22 Liquid-tolerant CAPSENSE™-based touch user interface in washing machine

• To compensate for changes in raw count due to mist, moisture, and humidity changes, the CAPSENSE™

sensing method continuously adjusts the baseline of the sensor to prevent false triggers.

• To prevent sensor false triggers due to a liquid flow, you should implement a Guard sensor as Figure 23

shows. The Driven-shield signal and shield electrode can be used to detect the presence of a streaming
liquid and ignore the status or stop the sensing from rest of the sensors as long as the liquid flow is present.

• Note that the guard sensor itself is just another self-capacitance sensor; even though you could implement

it around mutual-capacitance sensors also for liquid flow tolerance. PSoC™ devices allow implementation

of such self-capacitance sensors and mutual-capacitance sensors together in the same design.

• To compensate for changes in raw count due to liquid droplets for self-capacitance sensing, you can
implement a Driven-shield signal and shield electrode as Figure 23 shows. When a shield electrode is

implemented, CAPSENSE™ reliably works and reports the sensor ON/OFF status correctly, even when liquid

droplets are present on the sensor surface. To prevent sensor false triggers due to liquid droplets for
mutual-capacitance sensing, you can use both the sensing methods i.e., mutual capacitance and self-
capacitance with Driven-shield signal and shield electrode on the same set of sensors as Using self-
capacitance sensing for liquid tolerance of mutual-capacitance sensors explains.

In summary, if your application requires tolerance to liquid droplets, implement a Driven-shield signal and
shield electrode. If your application requires tolerance to streaming liquids along with liquid droplets,

implement a Driven-shield signal and shield electrode and a Guard sensor as shown in Figure 23. Follow the
schematic and layout guidelines explained in the Layout guidelines for liquid tolerance section to construct
the shield electrode and guard sensor respectively.

Application Note 26 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

C
S

1

C
S

3

C
S

2

SH

GUARD

Shield Electrode

Guard Sensor

Button Sensor

560 Ω

560 Ω

5
6

0
 Ω

5
6

0
 Ω

5
6

0
 Ω

CAPSENSE
Controller

Figure 23 Shield electrode (SH) and guard sensor (GUARD) connected to CAPSENSE™ controller

2.5.1 Liquid tolerance for self-capacitance sensing

2.5.1.1 Effect of liquid droplets and liquid stream on a self-capacitance sensor

To understand the effect of liquids on a CAPSENSE™ sensor, consider a CAPSENSE™ system in which the hatch
fill around the sensor is connected to ground, as Figure 24(a) shows. The hatch fill when connected to a GND

improves the noise immunity of the sensor. Parasitic capacitance of the sensor is denoted as CP in Figure 24(b).

BTN1

Hatch Fill
Connected to

Ground

Button Sensor
560 ΩCAPSENSE

Controller
CAPSENSE

Controller

560 Ω

CP

(a) (b)

Figure 24 Typical CAPSENSE™ system layout

As shown in Figure 25, when a liquid droplet falls on the sensor surface, due to its conductive nature it provides

a strong coupling path for the electric field lines to return to ground; this adds a capacitance CLD in parallel to
CP. This added capacitance draws an additional charge from the AMUX bus as explained in GPIO cell

capacitance to current converter resulting in an increase in the sensor raw count. In some cases (such as salty
water or water containing minerals), the increase in raw count when a liquid droplet falls on the sensor surface

may be equal to the increase in raw count due to a finger touch, as Figure 25 shows. In such a situation, sensor

false triggers might occur.

Application Note 27 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

BTN1

Hatch Fill
Connected to

Ground

Button Sensor
560 ΩCAPSENSE

Controller
CAPSENSE

Controller

560 Ω

CP CLD

Liquid Droplet

Figure 25 Capacitance added by liquid droplet when the Hatch Fill is connected to GND

CP = Sensor parasitic capacitance

CLD = Capacitance added by the liquid droplet

Figure 26 Effect of liquid droplet when the Hatch Fill around the sensor is connected to GND

To nullify the effect of capacitance added by the liquid droplet to the CAPSENSE™ circuitry, you should drive

the hatch fill around the sensor with the driven-shield signal.

As Figure 27 shows, when the hatch fill around the sensor is connected to the driven-shield signal and when a
liquid droplet falls on the touch interface, the voltage on both sides of the liquid droplet remains at the same

potential. Because of this, the capacitance, CLD, added by the liquid droplet does not draw any additional

charge from the AMUX bus and hence the effect of capacitance CLD is nullified. Therefore, the increase in raw
count when a water droplet falls on the sensor will be very small, as Figure 28 shows.

BTN1

Hatch Fill

Connected to

Driven Shield

Button Sensor

560 Ω

CapSense

Controller

CapSense

Controller

560 Ω

560 Ω

CS CSH

CHG

CLD

Liquid Droplet

560 Ω
Shield

Sensor Waveform

Driven Shield

Waveform

Shield

Figure 27 Capacitance added by liquid droplet when the hatch fill around the sensor is connected to

shield

Application Note 28 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

CS = Sensor parasitic capacitance

CSH = Capacitance between the sensor and the hatch fill

CHG = Capacitance between the hatch fill and ground

CLD = Capacitance added by the liquid droplet

Figure 28 Effect of liquid droplet when the hatch fill around the sensor is connected to the driven-

shield

Figure 26 shows how a sensor may false trigger in presence of a liquid, if hatch fill is connected to ground. Note
however, that the same is not true for all cases. For example, spring sensors, which are inherently more liquid

tolerant than sensors etched on PCB surface. As Figure 29 shows, due to the large airgap between the liquid

drop and the hatch fill, the capacitance CLD between the liquid drop and grounded hatch pattern on the PCB
would be very low so as not to cause any false triggers. If required, the hatched pattern on the PCB can still be
connected to a driven shield electrode to further nullify the effect of CLD and have an improved liquid tolerance.

Figure 29 Capacitance added by liquid droplet in spring sensor

Application Note 29 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

2.5.1.2 Driven-shield signal and shield electrode

The driven-shield signal is a buffered version of the sensor-switching signal, as Figure 30 shows. The driven-
shield signal has the same amplitude, frequency, and phase as that of sensor switching signal. When the hatch

fill around the sensor is connected to the driven shield signal, it is referred as shield electrode.

Buffer

Sensor Switching

Signal

Driven Shield

Signal

In-Phase Sensor and

Shield Signal

Figure 30 Driven shield signal

Shield electrode can be used for following purposes:

• To implement liquid-tolerant CAPSENSE™ designs: Shield electrode helps in making CAPSENSE™ designs

liquid-tolerant as explained above.

• To improve proximity sensing distance in presence of floating or grounded conductive objects: A shield

electrode, when placed between the proximity sensor and a floating or a grounded conductive object,

reduces the effect of these objects on the proximity-sensing distance and helps in achieving large proximity-

sensing distance. See the “Proximity Sensing” section in the Getting started with CAPSENSE™ design

guide for more details.

• To reduce the parasitic capacitance of the sensor: When a CAPSENSE™ sensor has a long trace, the CP of the
sensor will be very high because of the increased coupling of sensor electric field lines from the sensor trace

to the surrounding ground. By implementing a shield electrode, the coupling of electric field lines to ground
is reduced, which results in reducing the CP of the sensor.

See Layout guidelines for shield electrode for layout guidelines of shield electrode.

2.5.1.3 Guard sensor

When a continuous liquid stream is present on the sensor surface, the liquid stream adds a large capacitance
(CST) to the CAPSENSE™ sensor. This capacitance may be several times larger than CLD. Because of this, the
effect of the shield electrode is completely masked, and the sensor raw counts will be same as or even higher

than a finger touch. In such situations, a guard sensor is useful to prevent sensor false triggers.

A guard sensor is a copper trace that surrounds all the sensors on the PCB, as Figure 31 shows. A guard sensor
is similar to a button sensor and is used to detect the presence of streaming liquids. When a guard sensor is

triggered, the firmware should disable the scanning of all other sensors except the guard sensor to prevent

sensor false triggers.

Note: The sensors are not scanned, or the sensor status is ignored when the guard sensor is triggered;

therefore, touch cannot be detected when there is a liquid stream on the touch surface.

http://www.cypress.com/go/AN64846
http://www.cypress.com/go/AN64846

Application Note 30 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

CAPSENSE Controller

C
S

1

C
S

3

C
S

2

SHIELD

GUARD

BTN1 BTN2 BTN3 Shield Electrode

Guard Sensor

Button Sensor

560 Ω

560 Ω
5

6
0

 Ω

5
6

0
 Ω

5
6

0
 Ω Liquid Stream

5
6

0
 Ω

CS CSH

CHG

CLD

560 Ω

Sensor Waveform

Driven Shield
Waveform

CAPSENSE Controller

C
S

2

SHIELD

CST

Figure 31 Measurement with a liquid stream

See Layout guidelines for guard sensor for PCB layout guidelines for implementing a guard sensor.

If there is no space on the PCB for implementing a guard sensor, the guard sensor functionality can be
implemented in the firmware. For example, you can use the ON/OFF status of different sensors to detect a

liquid stream depending on the use case, such as follows:

• When there is a liquid stream, more than one button sensor will be active at a time. If your design does not

require multi-touch sensing, you can detect this and ignore the sensor status of all the button sensors to
prevent false triggering.

• In a slider, if the slider segments which are turned ON are not adjacent segments, you can reset the slider
segments status or ignore the slider centroid value that is calculated.

• Likewise, you could create your own custom algorithm to detect the presence of streaming liquids and
ignore the sensor status during the time a liquid is present on the touch surface.

Note: The sensors are not scanned, or the sensor status is ignored when the guard sensor is triggered;
therefore, touch cannot be detected when there is a liquid stream on the touch surface.

Application Note 31 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

2.5.2 Liquid tolerance for mutual-capacitance sensing

2.5.2.1 Effect of liquid droplets and liquid stream on a mutual-capacitance

sensor

Mutual-capacitance buttons often have a grounded hatch fill around the sensors for improved noise immunity.

If a liquid droplet falls over the sensor while covering some part of the grounded hatch, the mutual-capacitance
decreases similar to the effect of placing a finger on the sensor. This decrease in mutual-capacitance causes an
increase in raw count as explained in CAPSENSE™ CSX sensing method (third- and fourth-generation) in and

as shown in the Figure 32. The amount of increase in the raw count depends on the size and characteristics of

the liquid drop.

However, mutual-capacitance increases if the liquid droplet covers just the Tx and Rx electrode and does not

spread over the grounded hatch. This causes a decrease in raw count as shown in Figure 32. This decrease in
raw count may cause the baseline reset due to Low baseline reset. Once the liquid drop is removed, the raw
count would rise while the baseline may remain at the lower value, resulting in a difference signal which may

cause the sensor to false trigger.

Figure 32 Effect of liquid droplet on CSX sensor when the Hatch Fill around the sensor is connected

to ground

2.5.2.2 Using self-capacitance sensing for liquid tolerance of mutual-

capacitance sensors

CAPSENSE™ senses the self-capacitance of Tx and Rx nodes of a mutual-capacitance sensor. This ability of

scanning the sensor using both CSD and CSX modes could be used to avoid false triggers due to the presence of

liquid drops on a mutual capacitance sensor. See the code example PSoC™ 4 hybrid sensing using
CAPSENSE™ to understand how to sense a mutual-capacitance button with both CSD as well as CSX sensing
method.

To achieve liquid tolerance, you need to scan the Rx electrode of the sensor with the CSD sense method. While

scanning the Rx electrode as a CSD sensor, ensure that you enable the shield electrode, and connect the Tx pin

of the mutual-capacitance sensor to the driven shield signal. You can use the low-level API function
CapSense_SetPinState() to connect the Tx pin of the mutual-capacitance sensor to the shield electrode

before calling the CapSense_ScanAllWidgets() API function that scans the Rx electrode as a CSD sensor as
shown below:

Liquid droplet
on the Tx and

grounded shield

hatch

Liquid drop

present on the

Tx electrode

and Rx

electrode only

Liquid drop

removed from

the Tx electrode

and Rx

electrode

Finger Touch Finger touch
when Liquid

drop on the Tx

electrode and

Rx electrode

only

https://www.cypress.com/documentation/code-examples/ce224899-psoc-4-hybrid-sensing-using-capsense
https://www.cypress.com/documentation/code-examples/ce224899-psoc-4-hybrid-sensing-using-capsense

Application Note 32 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

CapSense_SetPinState(CapSense_BUTTON1_WDGT_ID,CapSense_BUTTON1_TX0_ID,CapSens

e_SHIELD);

CapSense_ScanAllWidgets();

From sections 2.5.1 and 2.5.2 you understood the effect of liquid drop on the CSD and CSX button respectively.
By utilizing the difference in their response to the liquid drop, you can create a firmware logic to achieve a
liquid-tolerant mutual-capacitance sensor. The effect of presence of the liquid drop on the CSD and CSX scan
results is summarized in Figure 33.

Figure 33 Effect of water drop on the CSX sensor pattern scanned with CSD and CSX methods

Where Figure 33 shows the effect of the water drop on the CSX sensor pattern surrounded by hatch fill when
scanned using this method. The regions in Figure 33 represent the following:

1. Finger touch

2. Liquid droplet on the Tx line and grounded shield hatch

3. Liquid drop present on the Tx and Rx electrodes only

4. Finger touch when a liquid drop is on the Tx and Rx electrodes only

5. Liquid drop removed from the Tx and Rx electrodes

The changes in raw count as shown in Figure 33 can be used in the firmware to reset the baseline of the CSX

sensor to nullify the effect of liquid drops. The button status should be ON state for Region 1, 4, and OFF state in

other regions; additionally, the baseline of the CSX button must be re-initialized in Region 3 and Region 5. The

baseline of the sensor could be reset by using the CapSense_InitializeWidgetBaseline() API

function as shown below:

CapSense_InitializeWidgetBaseline(CapSense_CSX_BUTTON_WDGT_ID);

See the Component datasheet / middleware document or more details on using this API; see Selecting
CAPSENSE™ software parameters to learn about the baseline of the sensor.

Sensing with

CSD method

Sensing with

CSX method

Application Note 33 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ technology

2.5.3 Effect of liquid properties on liquid-tolerance performance

In certain applications, the CAPSENSE™ system has to work in the presence of a variety of liquids such as soap
water, sea water, and mineral water. In such applications, it is always recommended to tune the CAPSENSE™

parameters for sensors by considering the worst-case signal due to liquid droplets. To simulate the worst-case
conditions, it is recommended that you test the liquid-tolerance performance of the sensors with salty water by
dissolving 40 grams of cooking salt (NaCl) in one liter of water. Tests were done using soapy water; the results
show that the effect of soapy water is similar to the effect of salty water. Therefore, if the tuning is done to

reject salty water, the CAPSENSE™ system will work even in the presence of soapy water.

In applications such as induction cooktops, there are chances of hot water spilling on to the CAPSENSE™ touch

surface. To determine the impact of the temperature of a liquid droplet on CAPSENSE™ performance, droplets

of water at different temperatures were poured on a sensor and the corresponding change in raw counts was

monitored. Experiment shows that the effect of hot liquid droplets is same as that of the liquid at room

temperature as Figure 34 shows. This is because the hot liquid droplet cools down immediately to room
temperature when it falls on the touch surface. If hot water continuously falls on the sensor and the

temperature of the overlay rises because of the hot water, the increase in raw count due to the increase in
temperature is compensated by the Baseline update algorithm, thereby preventing any false triggering of the

sensors.

Figure 34 Raw count variation versus water temperature

3000

3500

4000

4500

5000

5500

6000

6500

24.6 50 85

R
a
w

 C
o

u
n

t

Temperature in Degree Celsius

Rawcount_BTN0

Rawcount_BTN1

Rawcount_BTN2

Application Note 34 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

3 PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

This chapter explains how CAPSENSE™ CSD and CSX (Third, Fourth, and Fifth generations) is implemented in

the PSoC™ 4 and PSoC™ 6 MCU. See Capacitive touch sensing method to understand the basic principles of
CAPSENSE™. A basic knowledge of the PSoC™ device architecture is a prerequisite for this chapter. If you are
new to PSoC™ 4, see AN79953 - Getting started with PSoC 4™ or AN91267 - Getting started with PSoC™ 4
Bluetooth® LE; for PSoC™ 6 MCU, see AN221774 - Getting started with PSoC™ 6 MCU.

You can skip this chapter if you are using the automatic tuning feature (SmartSense) of the Component. See the

CAPSENSE™ performance tuning chapter for details.

The PSoC™ 4 family of devices has three different CAPSENSE™ architectures. Table 2 explains the differences

between the Third, Fifth-Generation CAPSENSE architecture.

3.1 CAPSENSE™ generations in PSoC™ 4 and PSoC™ 6

Table 2 lists the main differences in the CAPSENSE™ architecture.

 Comparison of CAPSENSE™ architecture for CSD and CSX

Feature
Third-generation

CAPSENSE™

Fourth-

generation

CAPSENSE™

Fifth-generation

CAPSENSE™
Improvement impact Conditions

SNR 5:1 6.5:1 48:1

Higher SNR implies

better sensitivity, i.e.

ability to sense smaller

signal.

VDD = 5V;

No firmware filter;

Cp ~= 33 pF;

Cf = 0.1 pF

Sensing mode
Self-cap and

Mutual-cap modes

Self-cap,

Mutual-cap

modes and

ADC modes

Self-cap and

Mutual-cap

modes

– –

Sensor capacitance

parasitic range
5 pF – 45 pF 5 pF – 200 pF 2 pF – 200 pF

Greater Cp range

implies higher

flexibility in PCB layout

routing and ability to

sense with very

short/long sensor

traces, and for different

PCB materials (for

example: FFC and so

on).

–

Typical sense signal

needed
100 fF 100 fF

15 fF for CSD-RM

10 fF for CSX-RM

Smaller sense signal

required, implying

support for thicker

overlays, higher

proximity range,

smaller sensor size and

so on.

VDD = 5V;

No firmware filter;

Cp ~= 33 pF;

SNR = 5:1;

Noise floor (pk-pk) – –
500 aF for CSD-RM

100aF for CSX-RM

Same as SNR.

Higher SNR or lower

noise floor implies

ability to sense smaller

signal.

VDD - 5V;

Cp ~= 33 pF;

CM = 5 pF

Overlay thickness

supported
Up to 5 mm Up to 5 mm Upto 18 mm

Supports designs with

thicker overlay.

10 mm CSD button;

Acrylic overlay;

SNR = 5:1;

Cp ~= 22 pF;

http://www.cypress.com/?rID=78695&source=an85951
http://www.cypress.com/?rID=102504
http://www.cypress.com/?rID=102504
https://www.cypress.com/documentation/application-notes/an221774-getting-started-psoc-6-mcu

Application Note 35 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

Feature
Third-generation

CAPSENSE™

Fourth-

generation

CAPSENSE™

Fifth-generation

CAPSENSE™
Improvement impact Conditions

Refresh rate – 22 Hz 242 Hz

Faster refresh rate

enables fast gestures

and taps detections on

applications such as

large trackpad and

long sliders or large

number of button

sensors with single

device, and so on.

7  5 CSX touchpad;

Acrylic overlay 3mm

thickness;

SNR = 10:1;

Finger Size = 8 mm;

CPU bandwidth

requirement

Completely CPU driven.

CPU is required for

initialization and

sequencing the

sensors.

40%

Sequencer4

takes care of

initialization,

configuration

and scanning

of sensors.

CPU needed

for

sequencing

through each

sensor.

7%

Completely

autonomous.

Reduced CPU usage for

sensing, frees CPU to

perform other

peripheral operations

and act as a central

controller in an

application.

10x8 CSX touchpad;

Scan clock = 1MHz;

No of sub-

conversions = 70;

Refresh rate = 100Hz;

Emission control

options.
PRS PRS, SSC PRS, SSC – –

Noise

immu

nity

Sense Voltage

(Vref)
1.2V 1.2V-2.8V. Rail to Rail

Higher the sense

voltage, higher the

noise immunity.

–

Differential

Sensing
Mutual-Cap sensing

Mutual-Cap

sensing

Mutual-Cap and

Self-Cap sensing

Differential sensing

cancels out noise

induced from external

environment through

CMOD.

VDD noise

impact
Yes Yes No

VDD noise have minimal

affect on fifth

generation CAPSENSE™

operation.

Sense

clock

freque

ncy

Self-Cap 45 kHz – 6 MHz
45 kHz – 6 MH

z
45 kHz – 6 MHz

Higher sense clock

frequency means faster

scan for low Cp sensors.

This provides ability to

support faster taps or

gestures, or for a given

refresh rate, ability to

implement multiple

firmware filters for

better immunity.

–

Mutual-Cap 45 kHz – 300 kHz
45 kHz – 3 MH

z
45 kHz – 6 MHz

Multi-channel support No No Yes

Provides ‘n’ times

increased speed of

scanning for the same

number of sensors, if

‘n’channels are used.

–

Shield Cp -- -- 1.2nF – –

Device family
PSoC™ 4100/4200

PSoC™ 4100M/4200M

PSoC™ 4000

PSoC™ 4000S
PSoC™ 4100S Max – –

4 The hardware state machine is a logic which controls the CAPSENSE™ block and sensor scanning.

Application Note 36 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

Feature
Third-generation

CAPSENSE™

Fourth-

generation

CAPSENSE™

Fifth-generation

CAPSENSE™
Improvement impact Conditions

PSoC™ 4100L/4200L

PSoC™ 4100BL/4200BL

PSoC™ 4100S

PSoC™ 4100S

Plus

PSoC™ 6

3.2 CAPSENSE™ CSD sensing method (third- and fourth-generation)

Figure 35 illustrates the CAPSENSE™ block that scans CAPSENSE™ sensors in CSD sensing mode.

GPIO
Cell

GPIO
Cell

GPIO
Cell

Modulator IDAC

 Compensation
IDAC

GPIO Pin

GPIO Pin

GPIO Pin

CMOD Pin

VREF

CS1

CS2

CSN

Integrating Capacitor for Sigma
Delta Converter
CMOD

I/O Cells Configured as Switched Capacitance
Circuits for Capacitance-to-Current Conversion

Raw
Count

Current-to-Digital Converter

AMUXBUS A
forms an Analog

Multiplexer for Sensors

Sensor 1

Sensor 2

Sensor N

IDAC Control

Modulator Clock

Switching Clock or Sense Clock for GPIO
Switched Capacitance Circuits,

Frequency FSW

Sigma Delta
Converter

CAPSENSE
Clock Generator

PERI CLK or
HFCLK From

System
Resourc

AMUXBUS B
for shielding

(always kept at VREF)

GPIO
Cell

GPIO Pin

GPIO Pin

Shield Tank
Capacitor
(optional)

CSH_TANK

CSHIELD

Shield Electrode
Capacitance

Shield Electrode

Shield
Circuit

Figure 35 CAPSENSE™ CSD sensing

As explained in Capacitive touch sensing method, this block works by first converting the sensor capacitance
into an equivalent current. An analog multiplexer then selects one of the currents and feeds it into the current-

to-digital converter. This current-to-digital converter consists of a sigma-delta converter, which controls the
modulation IDAC for a specific period, the total current sourced or sinked by the IDACs is the same as the total

current sinked or sourced by the sensor capacitance. The digital count output of the sigma-delta converter is
an indicator of the sensor capacitance and is called a raw count. This block can be configured in either IDAC

Sourcing mode or IDAC Sinking mode. In the IDAC Sourcing mode, the IDACs source current to AMUXBUS while
the GPIO cells sink current from AMUXBUS. In the IDAC Sinking mode, the IDACs sink current from AMUXBUS
while the GPIO cells source current to AMUXBUS.

Application Note 37 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

3.2.1 GPIO cell capacitance to current converter

In the CAPSENSE™ CSD system, the GPIO cells are configured as switched-capacitance circuits that convert
sensor capacitances into equivalent currents. Figure 36 shows a simplified diagram of the GPIO cell structure.

GPIO

Pin

VDDD

AMUXBUS

 A

AMUXBUS

B

SW1

SW2

SW3

SW4

Figure 36 GPIO cell structure

PSoC™ 4 and PSoC™ 6 devices consist of two AMUX buses: AMUXBUS A is used for CSD sensing and AMUXBUS B

is used for CAPSENSE™ CSD shielding.The GPIO switched-capacitance circuit has two possible configurations:

source current to AMUXBUS A or sink current from AMUXBUS A.

3.2.2 IDAC sourcing mode

In the IDAC Sourcing mode, the GPIO cell sinks current from the AMUXBUS A through a switched capacitor
circuit as Figure 37 shows.

SW1

SW3

CS

AMUXBUS A

RSeries

ISW

ISW

RS

AMUXBUS A

ISW

Figure 37 GPIO cell sinking current from AMUXBUS A

Two non-overlapping, out-of-phase clocks of frequency FSW control the switches SW1 and SW3 as Figure 38

shows. The continuous switching of SW1 and SW3 forms an equivalent resistance RS, as Figure 37 shows.

Application Note 38 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

SW1

SW3

CS

AMUXBUS A

SW1

SW3

AMUXBUS A

ISW =

CsVAMUXBUSfSW

Clock Phase 1 Clock Phase 2

ISW =

CsVAMUXBUSfSW

CS

RSeries RSeries

Figure 38 SW1 and SW3 switch in non-overlapping manner

If the switches operate at a sufficiently low frequency FSW, such that time TSW/2 is sufficient to fully charge the

sensor to VREF and fully discharge it to ground, as Figure 38 shows, the value of the equivalent resistance RS is
given by Equation 5.

Equation 5. Sensor equivalent resistance

RS =
1

CS FSW

Where,

CS = Sensor capacitance

FSW = Frequency of the sense clock

The sigma-delta converter maintains the voltage of AMUXBUS A at a constant VREF (this process is explained in

Sigma-delta converter. Figure 39 shows the resulting voltage waveform across CS.

V

t

VREF

(1.2V)

0

TSW = 1/FSW

SW1 OPEN

SW3 CLOSED

SW1 CLOSED

SW3 OPEN

Figure 39 Voltage across sensor capacitance

Equation 6 gives the value of average current taken from AMUXBUS A.

Equation 6. Average current sinked from AMUXBUS A to GPIO through CAPSENSE™ sensor (ICS)

ICS = CS FSWVREF

Application Note 39 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

3.2.3 IDAC sinking mode

In the IDAC sinking mode, the GPIO cell sources current to the AMUXBUS A through a switched capacitor circuit
as Figure 40 shows. Figure 41 shows the voltage waveform across the sensor capacitance.

Because this mode charges the AMUXBUS A directly through VDDD, it is more susceptible to power supply noise
compared to the IDAC sourcing mode. Hence, it is recommended to use this mode with an LDO or a very stable

and quiet VDDD.

SW2

SW3

CS

AMUXBUS A

RSeries

ISW

ISW

RS

AMUXBUS A

ISW

VDDD VDDD

ISW

Figure 40 GPIO cell sourcing current to AMUXBUS A

V

t

VREF

(1.2V)

0

TSW = 1/FSW

VDDD

SW2 CLOSED

SW3 OPEN

SW2 OPEN

SW3 CLOSED

Figure 41 Voltage across sensor capacitance

Equation 7 provides the value of average current supplied to AMUXBUS A.

Equation 7. Average current sourced to AMUXBUS A from GPIO through CAPSENSE™ sensor (ICS)

ICS = CS FSW (VDDD − VREF)

Application Note 40 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

3.2.4 CAPSENSE™ clock generator

The CAPSENSE™ clock generator block generates the sense clock FSW, and the modulation clock FMOD, from the
high-frequency system resource clock (HFCLK) or peripheral clock (PERI) depending on the PSoC™ device

family as shown in Figure 35.

3.2.4.1 Sense clock

The sense clock, also referred to as the switching clock, drives the non-overlapping clocks to the GPIO cell

switched capacitor circuits for the GPIO cell capacitance to current converter.
Sense clock can be sourced from three options: direct, 8-bit PRS, and 12-bit PRS. Some
PSoC™ 4 and PSoC™ 6 MCU parts also support additional spread spectrum clock (SSCx) modes. For more details

on the supported modes for PSoC™ device, see the Component datasheet / middleware document.

Direct clock is a constant frequency sense clock source. When you chose this option, the sensor pin switches
with a constant frequency clock with frequency as specified in the CAPSENSE™ component configuration

window.

PRS clock implies that the sense clock is driven from a PRS block, which can generate either 8-bit or 12-bit PRS.
Use of the PRS clock spreads the sense clock frequency over a wide frequency range by dividing the input clock
using a PRS.

SSCx also spreads the sense clock frequency. It provides better noise immunity and reduces radiated

electromagnetic emissions.

See Manually tuning hardware parameters for details on the clock source and frequency selection guidelines.

3.2.4.2 Modulator clock

The modulation clock is used by the Sigma-delta converter. This clock determines the sensor scan time based
on Equation 8 and Equation 9.

Equation 8. Sensor scan time

Sensor scan time = Hardware scan time + Sensor Initialization time

Equation 9. Hardware scan time

Hardware scan time =
(2Resolution − 1)

Modulator Clock Frequency
⁄

Where,

Resolution = Scan resolution

Sensor Initialization time = Time taken by the sensor to write to the internal registers and initiate a scan.

Application Note 41 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

3.2.5 Sigma-delta converter

The sigma-delta converter converts the input current to a corresponding digital count. It consists of a sigma-
delta converter and two current sourcing/sinking digital-to-analog converters (IDACs) called modulation IDAC

and compensation IDAC as Figure 35 shows.

The sigma-delta converter uses an external integrating capacitor, called modulator capacitor CMOD, as Figure 35

shows. Sigma-delta converter controls the modulation IDAC current by switching it ON or OFF corresponding
to the small voltage variations across CMOD to maintain the CMOD voltage at VREF. The recommended value of CMOD
is listed in Table 34.

The sigma-delta converter can operate in either IDAC sourcing mode or IDAC sinking mode.

• IDAC sourcing mode: In this mode, the GPIO cell capacitance to current converter sinks current from CMOD

through AMUXBUS A, and the IDACs then source current to AMUXBUS A to balance its voltage.

• IDAC sinking mode: In this mode,the GPIO cell capacitance to current converter sources current from

CMOD to AMUXBUS A and the IDACs sink current through AMUXBUS A to balance its voltage.

In both the above-mentioned modes, the sigma delta converter can operate in either single IDAC mode or dual
IDAC mode:

• In the single IDAC mode, the modulation IDAC is controlled by the sigma-delta converter; the compensation

IDAC is always OFF.

• In the dual IDAC mode, the modulation IDAC is controlled by the sigma-delta converter; the compensation
IDAC is always ON.

In the single IDAC mode, if ‘N’ is the resolution of the sigma-delta converter and IMOD is the value of the

modulation IDAC current, the approximate value of raw count in the IDAC Sourcing mode is given by Equation

10.

Equation 10. Single IDAC sourcing raw count

raw count = (2N − 1)
 VREF FSW

IMOD
 CS

Similarly, the approximate value of raw count in the IDAC sinking mode is given by Equation 11.

Equation 11. Single IDAC sinking raw count

raw count = (2N − 1)
 (VDD − VREF) FSW

IMOD
 CS

In both cases, the raw count is proportional to sensor capacitance CS. The raw count is then processed by the

CAPSENSE™ CSD Component firmware to detect touches. The hardware parameters such as IMOD, ICOMP, and FSW,
and the software parameters, should be tuned to optimum values for reliable touch detection. For an in-depth
discussion of the tuning, see CAPSENSE™ performance tuning.

In the dual IDAC mode, the compensation IDAC is always ON. If ICOMP is the compensation IDAC current, the
equation for the raw count in the IDAC sourcing mode is given by Equation 12.

Equation 12. Dual IDAC sourcing raw count

raw count = (2N − 1)
 VREF FSW

IMOD
 CS − (2N − 1)

 ICOMP

IMOD

Application Note 42 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

Raw count in the IDAC sinking mode is given by Equation 13.

Equation 13. Dual IDAC sinking raw count

raw count = (2N − 1)
 (VDD − VREF) FSW

IMOD
 CS − (2N − 1)

 ICOMP

IMOD

Note that raw count values are always positive. It is thus imperative to ensure that ICOMP is less

than (VDD − VREF) 𝐶𝑆 FSW for the IDAC sinking mode and ICOMP is less than CS FSWVREF for the IDAC Sourcing
mode. Equation 13 does not hold true if ICOMP > 𝑉REF 𝐶𝑆 FSW and Equation 12 does not hold true

if ICOMP > (𝑉DD − VREF) 𝐶𝑆 FSW; in these cases, raw counts will be zero.

The relation between the parameters shown in the above equation to the CAPSENSE™ Component parameters
is listed in Table 3.

 Relationship between CAPSENSE™ raw count and CAPSENSE™ hardware parameters

Sl. No. Parameter Description Comments

1 N Scan resolution

Scan resolution is configurable from 6-bit to 16-bit.

See Component datasheet / middleware document for

details.

2 VREF N/A

The VREF value is 1.2 V or configurable between 0.6 V to VDDA-

0.6 V depending on the PSoC™ device family.

See Component datasheet / middleware document for

details.

3 FSW

Sense clock

frequency
Sense clock frequency and sense clock source decide the

frequency at which the sensor is switching.

See Sense clock for details. Sense clock

source

4 IMOD Modulator IDAC IMOD = Modulation IDAC current

5 ICOMP
Compensation

IDAC
ICOMP = Compensation IDAC current

6 VDD N/A This parameter is the device supply voltage.

7 CS N/A This parameter is the sensor parasitic capacitance.

8 N/A
Modulator clock

frequency

Modulator clock divider does not impact raw count.

See the Modulator clock section for more details.

3.2.6 Analog multiplexer (AMUX)

The sigma delta converter scans one sensor at a time. An analog multiplexer selects one of the GPIO cells and

connects it to the input of the sigma delta converter, as Figure 35 shows. The AMUXBUS A and the GPIO cell

switches (see SW3 in Figure 40) forms this analog multiplexer. AMUXBUS A connects to all GPIOs that support
CAPSENSE™. See the corresponding Device datasheet for a list of port pins that support CAPSENSE™.
AMUXBUS A also connects the integrating capacitor CMOD to the sigma-delta converter circuit. AMUXBUS B is

used for shielding and is kept at VREF when shield is enabled.

Application Note 43 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

3.2.7 CAPSENSE™ CSD shielding

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ supports shield electrodes for liquid tolerance and proximity sensing.

CAPSENSE™ has a shielding circuit that drives the shield electrode with a replica of the sensor switching signal
to nullify the potential difference between sensors and shield electrode. See Driven-shield signal and shield

electrodeDriven-shield signal and shield and Effect of liquid droplets and liquid stream on a self-
capacitance sensor for details on how this is useful for liquid tolerance.

In the sensing circuit, the sigma delta converter keeps the AMUXBUS A at VREF (see Sigma-delta converter). The
GPIO cells generate the sensor waveforms by switching the sensor between AMUXBUS A and a supply rail
(either VDD or ground, depending on the configuration). The shielding circuit works in a similar way; AMUXBUS B

is always kept at VREF. The GPIO cell switches the shield between AMUXBUS B and a supply rail (either VDDD or
ground, the same configuration as the sensor). This process generates a replica of the sensor switching

waveform on the shield electrode. g

For a large shield layer with high parasitic capacitance, an external capacitor (Csh tank capacitor) is used to
enhance the drive capacity of the shield electrode driver.

3.3 CAPSENSE™ CSX sensing method (third- and fourth-generation)

Figure 42 illustrates the CSX sensing circuit. The implementation uses the following hardware sub-blocks from
CSD HW.

• An 8-bit IDAC and the sigma delta converter

• AMUXBUS A

• CAPSENSE™ clock generator for Tx clock and modulator clock

• VREF and port pins for Tx and Rx electrodes and external caps

• Two external capacitors (CINTA and CINTB) (see Table 34 for recommended value of these capacitors)

Note: PSoC™ 4100 does not support the CSX sensing method.

A
M

U
X

B
U

S
A

Mutual Cap
Electrode

CM12

CS1

CS2

Tx Pin

IDAC

CINTA

GPIO

CINTB

GPIO

Static
Connection

Rx Pin

SW1

SW2

Current-to-Digital Converter

IDAC control

Modulator Clock FMOD

CAPSENSE
Clock Generator

Sigma Delta
Converter

Raw
count

VREF

Tx Clock

PERI CLK or
HFCLK From

System
Resourc

Figure 42 CAPSENSE™ CSX sensing method configuration

Application Note 44 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

The CSX sensing method measures the mutual-capacitance between the Tx electrode and Rx electrode, as
shown in Figure 42. The Tx electrode is excited by a digital waveform (Tx clock), which switches between

VDDIO (or VDDD if VDDIO is not available in the given part number) and ground. The Rx electrode is statically
connected to AMUXBUS A. The CSX method requires two external integration capacitors, CINTA and CINTB. The

value of these capacitors is listed in Table 34.

Tx Clock

SW1

SW2

VAMUXBUS-A

VCINTA

VCINTB

Sub Conversion

Figure 43 CSX sensing waveforms

Figure 43 shows the voltage waveforms on the Tx electrode and CINTA and CINTB capacitors. The sampling – a

process of producing a “sample” – is started by the firmware by initializing the voltage on both external

capacitors to VREF and performing a series of sub-conversions. A sub-conversion is a capacitance to count
conversions performed within a Tx clock cycle. The sum of results of all sub-conversions in a sample is referred

to as “raw count”.

During a sub-conversion, both SW1 and SW2 switches are operated in phase with the Tx clock. On the rising
edge of the Tx clock, SW1 is closed (SW2 is open during this time) and charge flows from the Tx electrode to the

Rx electrode. This charge is integrated onto the CINTA capacitor, which increases the voltage on CINTA. The IDAC is
configured in sink mode to discharge the CINTA capacitor back to voltage VREF. On the falling edge of the Tx clock,

SW2 is closed (SW1 is open during this time) and the charge flows from the Rx electrode to the Tx electrode.
This causes the voltage on CINTB to go below VREF. The IDAC is configured in source mode to bring the voltage on

CINTB back to VREF.

The charge transferred between Tx and Rx electrodes in both the cycles is proportional to mutual-capacitance,

CM, between the electrodes. The sigma delta converter controls IDAC for charging or discharging the external

capacitors and also it measures the charging and discharging time in terms of modulator clock cycles for a sub-
conversion. Multiple sub-conversions are performed during the CSX scanning and the result of each sub-
conversion is accumulated to produce “raw count” for a sensor.

The modulator clock is used to measure the time taken to charge/discharge external capacitors within a Tx
clock cycle. For this reason, modulator clock frequency must be always greater than Tx clock frequency; higher

modulator clock frequency leads to better accuracy. For proper operation, the IDAC current should be set such
that the CINTA and CINTB capacitors are charged/discharged within one Tx clock cycle. The CAPSENSE™
Component / middleware provides an option to automatically calibrate the IDAC. It is recommended to enable
this option.

Application Note 45 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

Equation 14. Raw count relationship for mutual-capacitance sensing

RawcountCounter =
2 VTX FTX CM MaxCount

IDAC

MaxCount =
FMod NSub

FTX

Where,

IDAC = IDAC current

CM = Mutual-capacitance between Tx and Rx electrodes

VTX = Amplitude of the Tx signal

FTX = Tx clock frequency

FMod = Modulator clock frequency

NSub = Number of sub-conversions

When you place a finger on the CSX button, the mutual-capacitance between Rx and Tx electrodes decreases,
which decreases the raw count. This decrease in raw count from the hardware is inverted by the CAPSENSE™
Component to make it similar to the raw count change in CSD for a finger touch. The final resulting inverted raw

count is given by Equation 15.

Equation 15. Formula to determine rawcountComponent

RawcountComponent = MaxCount − RawcountCounter

See CSX sensing method (third- and fourth-generation) for more details of CSX hardware parameters.

Application Note 46 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

3.4 CAPSENSE™ CSD-RM sensing method (fifth-generation)

This section provides an overview of the CSD-RM architecture implemented in the Fifth-Generation CAPSENSE™
(known as multi sense converter (MSC)) devices. The main features include ratiometric sensing, differential

mode of operation without the need of reference voltage, use of capacitor DACs (CDAC) in place of current DACs
(IDAC) which improves noise performance.

GPIO Cell

GPIO Cell

Reference
Capacitor

Compensation
Capacitor

GPIO Pin

GPIO Pin

CS1

CSN

Raw
Count

Multi Sense Converter

AMUXBUS A

Sensor 1

Sensor N

CAPDAC
control

Modulator Clock

Switching Clock for GPIO cell

Ratio metric
Converter

CAPSENSE
Clock Generator

PERI CLK or
HFCLK From

System
Resource

AMUXBUS B
for shielding

Shield
Circuit

CMOD Pin

GPIO Cell

GPIO Pin

CSHIELD

Shield
Electrode

Capacitance Shield Electrode

CMOD Pin

CMOD1 CMOD2

GPIO Cell
GPIO Pin

CS0

Sensor 0

CTRL MUX

Switching Clock for CTRL Mux

DMA

SENSOR CONNECTION METHOD
SELECTION

AMUXBUS

CTRL MUX

LEGENDS

Figure 44 CAPSENSE™ CSD-RM (fifth-generation)

3.4.1 GPIO cell capacitance to charge converter

Section 3.2.1 explains the GPIO cell configuration. In the Fifth-Generation architecture, the sensor is either

interfaced to the AMUX (as before) or a new control MUX matrix which supports autonomous scanning (limited
number of pins supported). The GPIO cells are configured as switched-capacitance circuits that convert sensor
capacitances into equivalent charge transfer. Figure 45 shows the GPIO cell structure.

Application Note 47 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

GPIO

Pin

VDDD AMUXBUS

 A

SW1

SW2
SW3

SW4

SW1

SW2 SW3

SW4

VDDD

CTRLMUX

GPIO

Pin

CS

RSeries

CS

RSeries

AMUXBUS

B

MSCBUS

A

MSCBUS

B

Figure 45 GPIO cell structure

Four non-overlapping, out-of-phase clocks of frequency FSW control the switches (SW1, SW2, SW3 and SW4) as

Figure 46 shows.

VCs

t

VDDA

SW2 CLOSED

SW3 CLOSED

VDDA/2

0

TSW = 1/FSW

SW1 CLOSED

SW4 CLOSED

Figure 46 Voltage across sensor capacitance

3.4.2 Capacitor DACs (CDACs)

IDACs are replaced by CDACs in the Fifth-Generation CAPSENSE™ architecture. It consists of two CDACs, a

reference capacitor DAC and a compensation capacitor DAC. In each sense clock period the sensor capacitance,
as mentioned in GPIO cell capacitance to charge converter, transfers charge to both CMOD in a way that it
unbalances the voltage between the CMOD’s. Both capacitor DACs are switched onto CMOD multiple times during a
sense clock period to balance the CMOD’s back to their original voltage. Number of cycles required by the reference

capacitor DAC to balance is proportional to the self-capacitance of the sensors.

Application Note 48 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

3.4.3 CAPSENSE™ clock generator

This block generates the sense clock FSW, and the modulation clock FMOD, from the high-frequency system
resource clock (HFCLK) or peripheral clock (PERI) depending on the PSoC™ device family.

3.4.3.1 Sense clock

CAPSENSE™ clock generation is similar to that in the older generation as explained in Section 3.2.4.1.

3.4.3.2 Modulator clock

The modulation clock is used by the Ratiometric sensing technology. This clock determines the sensor scan
time based on Equation 16 and Equation 17.

Equation 16. Sensor scan time

𝑆ensor scan time = Hardware scan time + Sensor initialization time

Equation 17. Hardware scan time

𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 scan time =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠)

Sense clock frequency ⁄

Where,

Number of subconversions = Total number or sub-conversions in single scan

Subconversion = Capacitance to count conversions performed within a sense clock cycle

Sensor initialization time = Time taken by the sensor to write to the internal registers and initiate a scan

3.4.4 Ratiometric sensing technology

It consists of a ratiometric converter and two CDACs, a reference capacitor DAC and a compensation capacitor

DAC. In each sense clock period the sensor capacitance, as mentioned in GPIO cell capacitance to charge
converter, transfers charge to both CMOD in a way that it unbalances the voltage between the CMOD’s. The
Ratiometric converter controls the reference CDAC by switching it ON or OFF corresponding to the small

voltage variations across two CMOD’s to maintain the CMOD’s voltage at same level. Number of cycles required by
the reference capacitor DAC to balance the voltage between the CMOD’s is proportional to the self-capacitance of
the sensors.

The compensation capacitor is used to compensate excess mutual-capacitance from the sensor to increase the
sensitivity. The number of times it is switched depends on the amount of charge the user application is trying to
compensate (remove) from the sensor mutual-capacitance.

The ratiometric converter can operate in either single CDAC mode or dual CDAC mode.

• In the single CDAC mode, the reference CDAC is controlled by the ratiometric converter; the compensation
CDAC is always OFF.

• In the dual CDAC mode, the reference CDAC is controlled by the ratiometric converter; the compensation

CDAC is always ON. Reference CDAC is capable of compensating up to 95%, results in increased signal as
explained in Conversion gain and CAPSENSE™ signal.

Application Note 49 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

In the single CDAC mode, if Cref is the value of the reference CDAC, the approximate value of raw count is given
by Equation 18.

Equation 18. CSD-RM single CDAC raw count

Rawcount = Maxcount.
Cs

SnsClkDiv. Cref

In the dual CDAC mode, the compensation CDAC is always ON. If Ccomp is the compensation CDAC, the equation
for the raw count is is given by Equation 19.

Equation 19. CSD-RM dual CDAC raw count

Where,

MaxCount = NSub.SnsClkDiv

NSub = Number of sub-conversions

SnsClkDiv = Sense clock divider

CompClkDiv = Compensation CDAC divider

CS = Sensor capacitance

Cref = Reference capacitance

Ccomp = Compensation capacitance

As per Equation 18, the output raw count is proportional to the ratio of sensor capacitance to the reference

capacitance, and hence the name Ratiometric Sensing.

Noise improvement is one of the main advantages of Fifth-Generation over previous generation of CAPSENSE™

technology. The dominant noise sources in the Fourth-Generation are current (IMOD), reference voltage (VREF),
clock jitter (FSW) (see Equation 12). These noise souces have been removed for the Fifth-Generation (see

Equation 19). The IDAC has been replaced with CDAC. The system has been made fully differential, so it does
not need VREF. The CAPSENSE™ architecture is no longer affected by jitter as the scan result is now based on the

edges of the clock rather than the duration of the clock.

3.4.5 Analog multiplexer (AMUX) and control matrix (CTRLMUX)

Another feature introduced in the Fifth-Generation is the control matrix (CTRLMUX) as shown in Figure 44. The
CTRLMUX enables autonomous scanning and provides immunity to on-chip IO noise. The CTRLMUX allows the

CAPSENSE™ IP to directly handle the sensor inputs5 (in addition to the traditional GPIO mode), and hence

supports autonomous scanning of the sensors without the CPU.

5 Supports limited number of inputs. Refer to the Device for more details.

Rawcount = Maxcount.
Cs − 2.

SnsClkDiv

CompClkDiv
. Ccomp

SnsClkDiv. Cref

Application Note 50 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

3.4.6 CAPSENSE™ CSD-RM shielding

PSoC™ 4 CAPSENSE™ supports shield electrodes for liquid tolerance and proximity sensing. The purpose of the

shielding is to remove the parasitic capacitance between sensor and shield electrodes. See Driven-shield
signal and shield electrode and Effect of liquid droplets and liquid stream on a self-capacitance sensor for

details on how this is useful for liquid tolerance. The Fifth-Generation CAPSENSE™ architecture supports two
shield modes – active and passive shielding.

3.4.6.1 Active shielding

In active shielding mode, shield circuit drives the shield electrode with a replica of the sensor signal using a
buffer as shown in Figure 47. This nullify the potential difference between sensors and shield electrode.

Buffer

Sensor Signal

Active Shield

Signal

In-Phase Sensor and

Shield Signal

VDDA

0

VDDA/2

VDDA

0

VDDA/2

Figure 47 Active shield signal

3.4.6.2 Passive shielding

In passive shielding mode there is no buffer used, instead shield is switched between VDDA and GND as shown in

Figure 48. The switching is controlled in such a way that the net charge between sensor and shield is nullified
every two sense clocks.

Sensor Signal

Passive Shield

Signal

1 sense clock

VDDA

0

VDDA/2

VDDA

0

Figure 48 Passive shield signal

Application Note 51 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

Table 4 provides the comparison of features of active shielding vs passive shielding features.

 Active vs passive shielding

3.5 CAPSENSE™ CSX-RM sensing method (fifth-generation)

Figure 49 illustrates the CSX-RM sensing circuit. The implementation uses the following hardware sub-blocks:

• Two 8-bit capacitor DACs and ratiometric converter

• AMUXBUS and CTRLMUX

• CAPSENSE™ clock generator for Tx clock and modulator clock

• Port pins for Tx and Rx electrodes and external caps

• Two external capacitors (CMOD1 and CMOD2)

Raw
Count

AMUXBUS A

Switching Clock for GPIO cell

CAPSENSE
Clock Generator

PERI CLK or
HFCLK
From

System
Resource

CMOD Pin

CMOD Pin

CMOD1 CMOD2

GPIO Cell

GPIO cell

GPIO Pin

GPIO Pin

Cm 1

Rx 1

GPIO Cell

GPIO Pin

GPIO cell
GPIO Pin

Tx 1

Cm 0

Rx 0

Tx 0
Reference
Capacitor

Compensation
Capacitor

Raw
Count

Multi Sense Converter

CAPDAC
control

Modulator Clock

Ratio metric
Converter

Shield
Circuit

CTRL MUX

Switching Clock for CTRL Mux

DMA

SENSOR CONNECTION
METHOD SELECTION

AMUXBUS A

CTRL MUX

LEGENDS

Figure 49 CAPSENSE™ CSX-RM sensing method configuration

Feature Active shielding Passive shielding Effect

Performance Higher Lower
Active shielding is preferred for high

performance applications.

Power impact Higher Lower
Passive shielding is preferred for low

power applications.

Application Note 52 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

The CSX-RM sensing method measures the mutual-capacitance between the Tx electrode and Rx electrode, as
shown in Figure 49. The Tx electrode is activated by a digital waveform (Tx clock), which switches between VDDA

and ground. The Rx electrode is statically connected to AMUXBUS A or CTRLMUX. The CSX-RM method requires
two external integration capacitors, CMOD1 and CMOD2.

The sampling – a process of producing a “sample” – is started by the firmware by initializing the voltage on

both external capacitors (CMOD) to VDDA/2 and performing a series of sub-conversions. A sub-conversion is a
capacitance to count conversions performed within a Tx clock cycle. The sum of results of all sub-conversions
in a sample is referred to as “raw count”.

On the rising and falling edge of the Tx clock, charge flows from the Tx electrode to the Rx electrode. In such a
way that it unbalances the voltage between the external CMOD capacitors. Both capacitor DACs (reference and
compensation capacitor DACs) are switched onto CMOD multiple times during a sense clock period to balance

the CMOD’s back to their original voltage. Number of cycles required by the reference capacitor DAC to balance is
proportional to the mutual-capacitance, Cm, between the electrodes.

The number of times the reference capacitor is switched with respect to the modulator clock is denoted by the
Tx clock divider value according to Equation 20.

Equation 20. Tx clock divider

TxClkDiv =
FMod

FTx

Where,
TxClkDiv = Tx clock divider
FMod = Modulator frequency

FTx = Tx clock frequency

The compensation capacitor is used to compensate excess mutual-capacitance from the sensor to increase the

sensitivity. The number of times it is switched depends on the amount of charge the user application is trying to

compensate (remove) from the sensor mutual-capacitance. The number of times the compensation capacitor
is switched with respect to the modulator clock is denoted by the value of the compensation CDAC divider
according to the Equation 21. The CDAC compensation clock divider must be less than or equal to the Tx clock

divider.

Equation 21. Compensation CDAC divider

CompClkDiv =
FMOD

FComp

Where,

CompClkDiv = Compensation CDAC divider

FMOD = Modulator frequency

Fcomp = Compensation CDAC clock frequency

Application Note 53 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

3.5.1 Ratiometric sensing technology

The ratiometric converter gives an equivalent raw count which is proportional to the sensor mutual-
capacitance after each scan. The ratiometric converter can operate in either single CDAC mode or dual CDAC

mode.

• In the single CDAC mode, the reference CDAC is controlled by the ratiometric converter; the compensation

CDAC is always OFF.

• In the dual CDAC mode, the reference CDAC is controlled by the ratiometric converter; the compensation
CDAC is always ON. Compensation CDAC is capable of compensating up to 95%, results in increased signal
as explained in Conversion gain and CAPSENSE™ signal.

In the single CDAC mode, if Cref is the value of the reference CDAC, the approximate value of raw count is given

by Equation 22.

Equation 22. CSX-RM single CDAC raw count

Rawcount = Maxcount.
CM

TxClkDiv. (
Cref

2
)

In the dual CDAC mode, the compensation CDAC is always ON. If Ccomp is the compensation CDAC, the equation
for the raw count is is given by Equation 23.

Equation 23. CSX-RM dual CDAC raw count

Rawcount = Maxcount.
CM −

TxClkDiv
CompClkDiv

. Ccomp

TxClkDiv. (
Cref

2
)

Where,

MaxCount = NSub.TxClkDiv

NSub = Number of sub-conversions

TxClkDiv = Tx clock divider

CompClkDiv = CDAC compensation divider

CM = Mutual-capacitance of the sensor

Cref = Reference capacitance

Ccomp = Compensation capacitance

According to Equation 23, the output raw count is proportional to the ratio of mutual-capacitance of the
sensor to the reference capacitance, and hence the name ratiometric sensing.

3.6 Autonomous scanning

In previous generation CAPSENSE™ technology, after each scan, CPU is interrupted to configure next sensor.

Autonomous scanning mode in Fifth-Generation CAPSENSE™ technology avoids the CPU intervention for
scanning every next sensor. This significantly reduces the CPU bandwidth required for scanning widgets with
large number of sensors. Autonomous scanning requires features such as CTRLMUX and DMA. As the number of
pins supported with CTRLMUX is limited, number of pins supporting autonomous scanning is also limited. See

Configuring autonomous scan section for more details.

Application Note 54 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

PSoC™ 4 and PSoC 6™ MCU CAPSENSE™

3.7 Usage of multiple channels

The PSoC™ 4100S Max device supports two Fifth-Generation CAPSENSE™ Blocks – MSC0 and MSC1. Each block

has the same functionality and performance as explained in the CAPSENSE™ CSD-RM sensing method (fifth-
generation) and CAPSENSE™ CSX-RM sensing method (fifth-generation) sections. Each instance can be

considered as a channel and multiple instances imply multiple channels. Multi-channel behavior can be
supported by multiple instances in single chip and/or having multiple chips. The operation of the channels is

synchronized and operate in lockstep when scanning the sensors hooked in to the channels. Lockstep
guarantees clock synchronization and avoid any cross-channel noise due to un-synchronized sense clocks.
See Multi-channel scanning section for more details.

Application Note 55 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ design and development tools

4 CAPSENSE™ design and development tools

This chapter introduces the available software tools, such as PSoC™ Creator and ModusToolbox™, to develop
your CAPSENSE™ application. For more details, see the user manual of the respective IDE. Table 5 shows the
supported devices and the CAPSENSE™ component/middleware version in PSoC™ Creator and

ModusToolbox™.

 Tools and supported devices

Devices Software tool CAPSENSE™ library

PSoC™ 4000S, PSoC™ 4100S, PSoC™ 4100S Plus,

PSoC™ 4100S Plus 256K, PSoC™ 4500S

ModusToolbox™,

PSoC™ Creator

CAPSENSE™ middleware,

CAPSENSE™ component

PSoC™ 4100S Max, All PSoC™ 6 devices ModusToolbox™ CAPSENSE™ middleware

All other PSoC™ 4 devices PSoC™ Creator CAPSENSE™ component

4.1 PSoC™ Creator

PSoC™ Creator is a state-of-the-art, easy-to-use IDE. It offers a unique combination of hardware configuration
and software development based on classical schematic entry. You can develop applications in a drag-and-

drop design environment using a library of Components. For details, see the PSoC™ Creator home page.

4.1.1 CAPSENSE™ component

PSoC™ Creator provides a CAPSENSE™ component, which is used to create a capacitive touch system in PSoC™
by simply configuring this Component. The CAPSENSE™ component also provides an application programming

interface (API) to simplify firmware development. Some PSoC™ 4 Bluetooth® LE and PSoC™ 6 MCU devices also
support a CAPSENSE™ Gesture Component (see the corresponding Device datasheet to see if your device

supports this Component).

Figure 50 PSoC™ Creator component placement

https://www.cypress.com/products/modustoolbox-software-environment
https://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
https://www.cypress.com/products/modustoolbox-software-environment
https://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
http://www.cypress.com/?id=2494&source=an85951

Application Note 56 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ design and development tools

Each CAPSENSE™ component has an associated datasheet that explains details about the Component. To open
the Component datasheet, right-click the Component and select Open Datasheet.

The CAPSENSE™ component also has a Tuner GUI, called the Tuner GUI, to help with the tuning process.

4.1.2 CapSense_ADC6 component

The CapSense_ADC component is only applicable for the PSoC™ 4S-Series, PSoC™ 4100S Plus, PSoC™ 4100PS,

and PSoC™ 6 MCU devices. This component should be used when both CAPSENSE™ and ADC operations are
required. This component allows using the CAPSENSE™ block for ADC operation and touch functionality in a
time-multiplexed manner.

4.1.3 Tuner GUI

Tuner helper is included with the CAPSENSE™ component and assists in tuning CAPSENSE™ parameters and
monitoring sensor data such as raw count, baseline, and difference count. Refer the Component datasheet /
middleware document for the detailed procedure on how to use Tuner GUI.

4.1.4 Example projects

You can use the CAPSENSE™ example projects provided in PSoC™ Creator to learn schematic entry and
firmware development. To find a CAPSENSE™ example project, go to the PSoC™ Creator start Page, click Find

Code Example …, and select the appropriate architecture, as Figure 51 shows. You can also filter for a project
by writing partial or complete project name in the Filter by field.

Figure 51 PSoC™ Creator example project

6 CapSense_ADC is not supported in devices with Fifth-Generation CAPSENSE™ block.

http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd

Application Note 57 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ design and development tools

4.2 ModusToolbox™

ModusToolbox™ software suite is used for the development of PSoC™ 6 and PSoC™ 47 based CAPSENSE™
applications. You can download ModusToolbox™ from here. Before you start working with this software, It is

recommended that you go through the Quick start guide and user guide. If you have ModusToolbox IDE
installed in your system, you can create a CAPSENSE™ application for the devices supported in
ModusToolbox™.

4.2.1 CAPSENSE™ middleware

ModusToolbox™ provides a CAPSENSE™ middleware, which can be used to create a capacitive touch system in
PSoC™ by simply configuring parameters in the CAPSENSE™ configuration tool. The middleware also provides
an application programming interface (APIs) to simplify firmware development. See the CAPSENSE™

middleware library for more details.

4.2.2 CAPSENSE™ configurator

The CAPSENSE™ configurator tool in ModusToolbox™ is similar to that in PSoC™ Creator which is used to

configure the CAPSENSE™ hardware and software parameters. For more details on configuring CAPSENSE™ in
ModusToolbox™, see the ModusToolbox™ CAPSENSE™ configurator guide and CAPSENSE™ middleware
library. Figure 52 shows how to open the CAPSENSE™ configuration tool in ModusToolbox™. Alternatively, it

can also be opened from the Quick panel in the ModusToolbox™. For simplicity of documentation, this design
guide shows selecting the CAPSENSE™ parameter in PSoC™ Creator CAPSENSE™ component.

Figure 52 CAPSENSE™ configurator tool in ModusToolbox™

7 See Table 5 for supported PSoC™ 4 devices in ModusToolbox™.

http://www.cypress.com/modustoolbox
http://www.cypress.com/ModusToolboxQSG
http://www.cypress.com/ModusToolboxUserGuide
https://infineon.github.io/capsense/capsense_api_reference_manual/html/index.html
https://infineon.github.io/capsense/capsense_api_reference_manual/html/index.html
https://www.cypress.com/products/modustoolbox-software-environment
https://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
http://www.cypress.com/ModusToolboxCapSenseConfig
https://infineon.github.io/capsense/capsense_api_reference_manual/html/index.html
https://infineon.github.io/capsense/capsense_api_reference_manual/html/index.html

Application Note 58 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ design and development tools

4.2.3 CSDADC middleware8

This CSDADC middleware should be used when both the CAPSENSE™ and ADC operations are required. This
middleware allows using the CAPSENSE™ hardware block for ADC operation and touch functionality in a time-

multiplexed manner. It could be used for all three sensing modes i.e., CSD, ADC, and CSX. See the CSDADC
middleware library documentation for more details.

4.2.4 CSDIDAC middleware

The CSDIDAC middleware allows you to use the CAPSENSE™ IDAC in a standalone mode. You can use this
middleware if you are not using CAPSENSE™ middleware or if you are using only one IDAC for CAPSENSE™. See

the CSDADC middleware library documentation.

4.2.5 CAPSENSE™ tuner

ModusToolbox™ also supports a GUI tool that can be used for tuning CAPSENSE™ parameters. This tool can be

opened from the Device configurator by selecting Launch CapSense Tuner as shown in Figure 52. See the

CAPSENSE™ tuner guide documentation.

4.2.6 Example projects

To quickly start the CAPSENSE™ system design, start with the example projects provided in ModusToolbox™.

You can find a CAPSENSE™ example project by navigating to File > New > ModusToolbox Application. Choose

the appropriate Board Support Package with a device. Figure 53 shows creating a CAPSENSE™ CSD Button

example starter code in ModusToolbox™ from the list of available code examples.

8 CapSense_ADC is not supported in devices with Fifth-Generation CAPSENSE™ block.

https://infineon.github.io/csdadc/csdadc_api_reference_manual/html/index.html
https://infineon.github.io/csdadc/csdadc_api_reference_manual/html/index.html
https://infineon.github.io/csdidac/csdidac_api_reference_manual/html/index.html
https://www.cypress.com/file/492971/download
http://www.cypress.com/ModusToolboxCapSenseTuner

Application Note 59 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ design and development tools

Figure 53 Creating CAPSENSE™ CSD Button example project in ModusToolbox™

Application Note 60 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ design and development tools

4.3 Hardware kits

Table 6 lists the development kits that support evaluation of PSoC™ 4 and PSoC™ 6 CAPSENSE™.

 PSoC™ 4 and PSoC™ 6 CAPSENSE™ development kits

Development kit Supported CAPSENSE™ features

PSoC™ 4000 pioneer kit (CY8CKIT-040) A 5x6 CAPSENSE™ touchpad and a wire proximity sensor

PSoC™ 4 S-series pioneer kit

(CY8CKIT-041)

Two self- or mutual-capacitive sensing buttons

A 7×7 self- or mutual-capacitive sensing touchpad

PSoC™ 4 S-series prototyping kit (CY8CKIT-145)

Three self- or mutual-capacitive sensing buttons

A five-segment self- or mutual-capacitive sensing linear

slider

PSoC™ 4100S Plus prototyping kit (CY8CKIT-149)

Three self- or mutual-capacitive sensing buttons

A six-segment self- or mutual-capacitive sensing linear

slider

PSoC™ 4100S Max pioneer kit (CY8CKIT-041S-

Max)

Two self- or mutual-capacitive sensing buttons

An eight-segment self- or mutual-capacitive sensing linear

slider

A 10x16 self- or mutual-capacitive sensing touchpad

A proximity sensor loop

PSoC™ 4 pioneer kit (CY8CKIT-042) A five-segment linear slider

PSoC™ 4 Bluetooth® LE pioneer Kit (CY8CKIT-

042-BLE)
A five-segment linear slider and a wire proximity sensor

PSoC™ 4200-M pioneer kit (CY8CKIT-044)
A five-element gesture detection and two proximity wire

sensors

PSoC™ 4200-L pioneer kit (CY8CKIT-046)
A five-element gesture detection, two proximity wire

sensors, and an eight-element radial slider

PSoC™ 4100PS prototyping kit (CY8CKIT-147)
No onboard CAPSENSE™ sensors. The kit can be used to

connect external sensors to any I/O pin.

CAPSENSE™ proximity shield

(CY8CKIT-024)

A four-element gesture detection and one proximity loop

sensor

CAPSENSE™ liquid level sensing shield

(CY8CKIT-022)
A two-element flexible PCB and 12-element flexible PCB

PSoC™ 4 processor module (CY8CKIT-038), with

PSoC™ development kit (CY8CKIT-001)
A five-segment linear slider and two buttons

CAPSENSE™ expansion board kit

(CY8CKIT-031), to be used with CY8CKIT-038

and CY8CKIT-001

A 10-segment slider, five buttons and a 4 x 4 matrix button

with LED indication.

MiniProg3 program and debug kit

(CY8CKIT-002)
CAPSENSE™ performance tuning in CY8CKIT-038

PSoC™ 6 Wi-Fi BT pioneer kit

(CY8CKIT-062-WiFi-BT pioneer kit) and
PSoC™ 6 Bluetooth® LE pioneer kit

(CY8CKIT-062-BLE pioneer kit)

A 5-segment CAPSENSE™ slider, two CAPSENSE™ buttons,
one CAPSENSE™ proximity sensing header, a proximity

sensor.

http://www.cypress.com/CY8CKIT-040
http://www.cypress.com/CY8CKIT-041
http://www.cypress.com/CY8CKIT-145
http://www.cypress.com/CY8CKIT-149
https://www.cypress.com/documentation/development-kitsboards/psoc-4100s-max-pioneer-kit-cy8ckit-041s-max
https://www.cypress.com/documentation/development-kitsboards/psoc-4100s-max-pioneer-kit-cy8ckit-041s-max
http://www.cypress.com/?rid=77780&source=an85951
http://www.cypress.com/?rID=102636
http://www.cypress.com/?rID=102636
http://www.cypress.com/cy8ckit-044
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-046-psoc-4-l-series-pioneer-kit
http://www.cypress.com/CY8CKIT-147
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-024-capsense-proximity-shield
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-022-capsense-liquid-level-sensing-shield?source=search&keywords=cy8ckit-022
http://www.cypress.com/go/cy8ckit-038
http://www.cypress.com/?rID=37464&source=an85951
http://www.cypress.com/?rID=50970&source=an85951
http://www.cypress.com/go/cy8ckit-038
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-001-psoc-development-kit?source=search&keywords=CY8CKIT-001
http://www.cypress.com/?rID=38154&sourec=an85951
http://www.cypress.com/cy8ckit-062-wifi-bt
http://www.cypress.com/cy8ckit-062-ble

Application Note 61 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ design and development tools

Development kit Supported CAPSENSE™ features

PSoC™ 6 Wi-Fi BT prototyping kit (CY8CPROTO-

063-4343W)

A 5-segment CAPSENSE™ slider and two mutual-cap

CAPSENSE™ buttons

http://www.cypress.com/cy8cproto-062-4343w
http://www.cypress.com/cy8cproto-062-4343w

Application Note 62 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5 CAPSENSE™ performance tuning

After you have completed the sensor layout (see PCB layout guidelines), the next step is to implement the

firmware and tune the CAPSENSE™ parameters for the sensor to achieve optimum performance. The
CAPSENSE™ sensing method is a combination of hardware and firmware techniques. Therefore, it has several
hardware and firmware parameters required for proper operation. These parameters should be tuned to
optimum values for reliable touch detection and fast response. Most of the capacitive touch solutions in the

market must be manually tuned. A unique feature called SmartSense (also known as Auto-tuning) is available

for PSoC™ 4 and PSoC™ 6 CAPSENSE™. SmartSense is a firmware algorithm that automatically sets all
parameters to optimum values.

5.1 Selecting between SmartSense and manual tuning

SmartSense auto-tuning reduces design cycle time and provides stable performance across PCB variations, but
requires additional RAM and CPU resources, as indicated in the Component datasheet / middleware
document or ModusToolbox™ CAPSENSE™ configurator guide, to allow runtime tuning of CAPSENSE™
parameters. SmartSense is recommended mainly for conventional CAPSENSE™ applications involving simple

button and slider widgets, and is currently supported only for Self-capacitance sensing Self-capacitance
sensingand not Mutual-capacitance sensing.

On the other hand, manual tuning requires effort to tune optimum CAPSENSE™ parameters, but allows strict
control over characteristics of capacitive sensing system, such as response time and power consumption. It
also allows use of CAPSENSE™ beyond the conventional button and slider applications such as proximity and

liquid-level-sensing.

SmartSense is the recommended tuning method for all the conventional CAPSENSE™ applications. You should

use SmartSense auto-tuning if your design meets the following requirements:

• The design is for conventional user-interface application like buttons, sliders, and touchpad.

• The parasitic capacitance (CP) of the sensors is within SmartSense-supported range as mentioned in the

“SmartSense operating conditions” section in Component datasheet / middleware document or
ModusToolbox™ CAPSENSE™ configurator guide.

• The sensor scan time chosen by SmartSense meets the response time/power requirements of the end

system.

• SmartSense auto-tuning meets the RAM/flash requirements of the design.

For all other applications, use Manual tuning. In such cases, you can also use SmartSense as an initial step to
find the optimum hardware parameters such as Sense Clock frequency, and then change the tuning mode to
manual tuning for further tuning of the CapSense parameters. See Using SmartSense to determine hardware

parameters. Note that manual tuning requires I2C or UART communication with a host PC.

https://www.cypress.com/file/455231/download
https://www.cypress.com/file/455231/download

Application Note 63 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.2 SmartSense

5.2.1 Overview

The CAPSENSE™ algorithm is a combination of hardware and firmware blocks inside PSoC™. Therefore, it has
several hardware and firmware parameters required for proper operation. These parameters need to be tuned
to optimum values for reliable touch detection and fast response.

SmartSense is a CAPSENSE™ tuning method that automatically sets sensing parameters for optimal
performance, based on user-specified finger capacitance values, and continuously compensates for system,

manufacturing, and environmental changes.

Note that SmartSense currently supports widgets with CSD (Self-cap) Sensing mode only. CSX (Mutual-cap)

widgets must be tuned manually.

Some advantages of SmartSense, as opposed to manual tuning are:

• Reduced design cycle time: The design flow for capacitive touch applications involves tuning all of the

sensors. This step can be time consuming if there are many sensors in your design. In addition, you must

repeat the tuning when there is a change in the design, PCB layout, or mechanical design. Auto-tuning
solves these problems by setting all of the parameters automatically. Figure 54 shows the design flow for a
typical CAPSENSE™ application with and without SmartSense.

Feasibility

Study PCB Layout

Mechanical Design

Review

System
Integration

Re-tuning for Any
Changes (Manual)

Manual Tuning
Process

Production
Fine-Tuning

Design
Validation

Production

Design Flow Without SmartSense

Design Flow With SmartSense

Schematics
Design

PCB Layout
Design

Feasibility

Study PCB Layout

Mechanical Design

Review

Design
Validation

Production

Firmware

Development
Schematics

Design
PCB Layout

Design

System
Integration

Firmware

Development

Figure 54 Design flow with and without SmartSense

Application Note 64 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

• Performance is independent of PCB variations: The parasitic capacitance, CP, of individual sensors can
vary due to process variations in PCB manufacturing, or vendor-to-vendor variation in a multi-sourced

supply chain. If there is significant variation in CP across product batches, the CAPSENSE™ parameters must
be re-tuned for each batch. SmartSense sets parameters for each device automatically, hence taking care of

variations in CP.

• Ease of use: SmartSense is faster and easier to use because only a basic knowledge of CAPSENSE™ is

needed.

Note that SmartSense can be used in multiple ways:

1. SmartSense (Full auto-tune) – This is the quickest way to tune. This method calibrates CAPSENSE™
hardware and software parameters automatically at runtime. This is the recommended method for most
designs.

2. SmartSense (Hardware parameters only) – This method auto-tunes all hardware parameters of
CAPSENSE™, but allows to set user-defined threshold values (see Table 11). This method consumes less

flash/RAM resources than SmartSense (Full Auto-Tune). Also, this method avoids the extra processing
needed for automatic threshold calculation and hence allows lower power consumption for a given scan
rate. Use this method for low-power or noisy designs or in cases with constrained memory requirements.

3. SmartSense for initial tuning – You may also use SmartSense for initial tuning, to quickly find the best

settings for a CAPSENSE™ board and then change to manual tuning. This method is useful for cases with
strict requirements on response time or power consumption. This is a quick method to find the best

settings, instead of starting manual tuning from scratch. Refer to the section Using SmartSense to

determine hardware parameters for more details.

4. CAPSENSE™ parameters auto-tuned in SmartSense

Parameter Full auto-tune mode
Hardware parameters only

mode

Scan resolution

Calculated once on CAPSENSE™ initialization.

Compensation IDAC

Modulator IDAC

Sense clock frequency

Modulator clock frequency

Finger threshold

Calculated once on CAPSENSE™
initialization based on the
selected finger capacitance and

updated after each sensor scan.

Manual selection (see Table 11).

Noise threshold

Hysteresis

Negative noise threshold

Low baseline reset

Application Note 65 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.2.2 SmartSense full auto-tune

In SmartSense Full Auto-tune mode, the only parameter that needs to be tuned by the user is the Finger
Capacitance parameter. The Finger Capacitance parameter (CF) indicates the minimum value of finger

capacitance that should be detected as a valid touch by the CAPSENSE™ Component. Whenever the actual CF
that is added when the finger touches the button sensor is greater than the value specified for the Finger
Capacitance parameter in the Component configuration window, the sensor status will change to ‘1’; however,
if the actual CF added by the finger touch is less than the value specified in the Component configuration

window, the sensor status will remain ‘0’. The way of tuning the finger capacitance is different for button and

slider widgets.

Note that even for SmartSense auto-tuning, the CAPSENSE™ Component allows manual configuration of some

general parameters like enable/disable of compensation IDAC, filters, shield such as liquid-tolerance-related

parameters and modulator clock. These can be left at their default values for most cases or configured based

on the respective sections in this guide.

5.2.2.1 Tuning button widgets

This section explains how to choose the Finger capacitance value for the Button widget. You may perform only a
coarse tuning of the Finger capacitance parameter for a working design, or you may choose to fine-tune the

Finger capacitance value. Coarse-tuning will satisfy the requirements of most designs, but fine-tuning will allow
you to choose the most efficient CAPSENSE™ parameters (i.e., minimum sensor scan time) using SmartSense.

If you do not know the value of CF (CF can be estimated based on Equation 1), set the Finger capacitance as

follows:

1. Start by specifying the highest value for finger capacitance (from the available options in the list) and check

the SNR and button status when the button is touched. Use the Tuner GUI to find the SNR.

2. Decrease the finger capacitance parameter value until the button status changes to ‘1’ on touch and SNR>5.
Figure 55 shows the detailed steps to find the right value for the Finger capacitance parameter in your

design.

Enable filters if the SNR of one or more sensors is less than 5:1 when the set finger capacitance is already at the
least finger capacitance supported in the Component. You can also enable filters if externally induced noise is

causing a decrease in SNR. See Table 7 to choose the right filter in this case. There are various types of filters

available in the CAPSENSE™ Component such as Median Filter, IIR filter, and Average Filter; you can enable
more than one filter to reduce the noise in the raw count according to the requirement.

If you choose to use an IIR filter, begin by selecting a filter with a higher value of the filter coefficient and keep
decreasing it until you achieve an SNR greater than or equal to 5:1. Using filters will affect the response time.

You must properly select the filter coefficient such that the response time and SNR requirement are satisfied.

If the SNR is still less than 5:1 even when the smallest allowed value of finger capacitance and proper filter is

chosen, see PCB layout , Manual tuning, or Tuning debug FAQs for more details on debugging the issue.

Application Note 66 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Tuning Finger Capacitance

Fine tuning

Coarse tuning

Start

Select the highest
finger capacitance

value

Measure the signal
and calculate SNR

Is SNR>5:1? &
Does sensor status change to

1 on touch?

Choose the next
lower value of finger

capacitance

No

Chose the next higher value
of finger capacitance

Is SNR>5:1? &
Does sensor status change to 1

on touch?

Yes

Use this finger
capacitance value

End

Yes

Decrease the finger
capacitance to a value in
between the current and
the next lower available

value

No

Measure the signal
and calculate SNR

Figure 55 Using SmartSense auto-tuning based CAPSENSE™ project in PSoC™ Creator

Application Note 67 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

 Raw data noise filters in CAPSENSE™ component

Filter Description Mathematical description Application

Median

Nonlinear filter that takes
the three most recent

samples and computes the

median value.

𝑦[𝑖] = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑥[𝑖], 𝑥[𝑖 − 1], 𝑥[𝑖
− 2])

Eliminates noise
spikes from motors

and switching power

supplies

Average

Finite impulse response
filter (no feedback) with

equally weighted
coefficients. It takes the four
most recent samples and

computes their average.

𝑦[𝑖] =
1

4
∗ (𝑥[𝑖] + 𝑥[𝑖 − 1] + 𝑥[𝑖 − 2]

+ 𝑥[𝑖 − 3])

Eliminates periodic

noise (for example,

from power supplies)

First
Order

IIR

Infinite impulse response
filter (feedback) with a step
response similar to an RC
low pass filter, thereby

passing the low-frequency
signals (finger touch

responses).

K value is fixed to 256.

N is the IIR filter raw count

coefficient.

A lower N value results in
lower noise, but slows down

the response.

𝑦[𝑖] =
1

𝐾
∗ {𝑁 ∗ 𝑥[𝑖] + (𝐾 − 𝑁)

∗ 𝑦[𝑖 − 1]}

Eliminates
high-frequency

noise.

5.2.2.2 Tuning slider widgets

For sliders, set finger capacitance to the highest value initially. Slide your finger on the slider. If at any position
on the slider, at least one slider segment status is ON and has an SNR >5:1, and at least two slider segments

report a “difference count” i.e., a “sensor signal” value greater than 0, use this finger capacitance value.
Otherwise, decrease the finger capacitance value until the above condition holds true. Figure 56 shows how to
tune the finger capacitance for slider widget.

If these conditions are not met even after setting minimum allowed Finger Capacitance, use Manual tuning or
revise the hardware according to Slider design considerations or see Tuning debug FAQs. Figure 56 explains

the process of setting finger capacitance value for sliders.

Note: It is recommended to use the compensation IDAC because it allows a higher variation in the
parasitic capacitance of the slider segment with respect to the slider segment that has the
maximum CP.

Application Note 68 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Start

Slide finger over the slider and
monitor the difference count i.e.,

Sensor Signal

Set the Finger capacitance value to
the maximum allowed

At any finger position, do at least
two slider segments provide

difference count (Sensor Signal >
0)?

End

Yes

Yes

No

NoAt any finger position, does at
least one slider-segment provide

an SNR > 5:1
and sensor signal > 50?

Decrease finger capacitance value by
one unit

Is finger capacitance >=
minimum allowed finger

capacitance value?

No

Yes

A hardware change may be
required.

Review slider design* or use
manual tuning**

Figure 56 Setting finger capacitance value for ssliders

* To review slider design, see the Slider design section in the Design considerations chapter.

** To do manual tuning, see the Manual tuning section in the CAPSENSE™ performance tuning chapter.

5.2.2.3 Tuning proximity widgets

See AN92239 Proximity sensing with CAPSENSE™ and the “Proximity sensing” section in Getting started

with CAPSENSE™ design guide.

5.2.3 SmartSense hardware parameters-only mode

See Table 11 for the recommended values for thresholds when the CSD tuning method is SmartSense
(Hardware parameters only).

5.2.4 SmartSense for initial tuning

See Using SmartSense to determine hardware parameters for more details.

http://www.cypress.com/documentation/application-notes/an92239-proximity-sensing-capsense
http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense

Application Note 69 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3 Manual tuning

5.3.1 Overview

SmartSense technology allows a device to calibrate itself for optimal performance and complete the entire
tuning process automatically. This technology will meet the needs of most designs, but in cases where
SmartSense does not work or there are specific SNR or power requirements, the CAPSENSE™ parameters can

be adjusted to meet system requirements. This can be achieved by manual tuning.

Some advantages of manual tuning, as opposed to SmartSense auto-tuning are:

• Strict control over parameter settings: SmartSense sets all the parameters automatically. However, there
may be situations where you need to have strict control over the parameters. For example, use manual

tuning if you need to strictly control the time PSoC™ takes to scan a group of sensors or strictly control the
sense clock frequency of each sensor (this can be done to reduce EMI in systems).

• Supports higher parasitic capacitances: If the parasitic capacitance is higher than the value supported by
SmartSense, you should use manual tuning. See the Component datasheet / middleware for more details

on the supported range of parasitic capacitance by SmartSense.

The manual tuning process can be summarized in the following three steps and is shown in Figure 57.

1. Set initial values of Selecting CAPSENSE™ hardware parameters using SmartSense (see Using SmartSense

to determine hardware parameters) or determine the values manually.

2. Tune CAPSENSE™ component hardware parameters to ensure that Signal-to-noise is greater than 5:1 with

a signal of at least 50 counts while meeting the system timing requirements.

3. Set optimum values of Selecting CAPSENSE™ software parameters.

The following sections describe the fundamentals of manual tuning and the above three steps in detail.
Knowledge of the CAPSENSE™ architecture in PSoC™ is a prerequisite for these sections. See Capacitive touch

sensing method and CAPSENSE™ generations in PSoC™ 4 and PSoC™ 6. The main difference in CAPSENSE™
architecture across different generations are listed in Table 2.

Depending upon the sensing method selected, the manual tuning procedure will differ. See CSD sensing
method (third- and fourth-generation), CSX sensing method (third- and fourth-generation) section for
their respective manual tuning procedures. You can skip these sections if you are not planning to use manual

tuning in your design. Figure 57 shows a general manual tuning procedure.

Application Note 70 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Start

Measure SNR

Set CAPSENSE Hardware
Parameters

Is SNR > 5
and

signal >50 counts?

A hardware change may be
required. Review your hardware

design*

Does the system meet timing
requirements?

Set CAPSENSE Software
parameters

Adjust CAPSENSE
hardware parameters to

meet scan time
requirements.

End

Is SNR > 5
and

Signal >50 counts?

Yes

No

No

Adjust CAPSENSE hardware
parameters to increase SNR

Ensure SNR > 5:1
and system meets timing requirements

No

Yes

Yes

Figure 57 Manual tuning process overview

* To review the hardware design, see the Sensor construction and PCB layout guidelines sections in the
Design considerations chapter.

Application Note 71 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.2 CSD sensing method (third- and fourth-generation)

This section explains the basics of manual tuning using CSD sensing method. It also explains the hardware and
software parameters that influence CSD sensing method and procedure of manual tuning for button, slider,

touchpad and proximity widgets.

5.3.2.1 Basics

5.3.2.1.1 Conversion gain and CAPSENSE™ signal

Conversion gain will influence how much signal the system sees for a finger touch on the sensor. If there is

more gain, the signal is higher, and a higher signal means a higher achievable Signal-to-noise ratio (SNR).
Note that an increased gain may result in an increase in both signal and noise. However, if required, you can

use firmware filters to decrease noise. For details on available firmware filters, see Table 7.

Conversion gain in single IDAC mode

In the single IDAC mode, the raw count is directly proportional to the sensor capacitance.

Equation 24. Raw count relationship to sensor capacitance

raw count = GCSD CS

Where,

CS = sensor capacitance
CS = CP if there is no finger present on sensor

CS = (CP + CF) when there is a finger present on the sensor
GCSD = Capacitance to digital conversion gain of CAPSENSE™ CSD

The approximate value of this conversion gain using the IDAC sourcing mode, according to Equation 10 and

Equation 24 is:

Equation 25. Capacitance to digital converter gain

GCSD = (2N − 1)
 VREF FSW

IMOD

Equation 26. Capacitance to digital converter gain (sinking IDAC mode)

GCSD = (2N − 1)
 (VDD − VREF) FSW

IMOD

Where,

VREF = Comparator reference voltage. Refer Table 2.

FSW = Sense clock frequency

IMOD = Modulator IDAC current

N = Resolution of the sigma to delta converter.

The tunable parameters of the conversion gain are VREF, FSW, IMOD, and N. Figure 58 illustrates a plot of raw count
versus sensor capacitance.

Application Note 72 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

raw count

CS

CP CP+CF

CF

maximum raw count = 2
N
-1

CapSense Signal

0

Slope of the line = GC

Figure 58 Raw count versus sensor capacitance

The change in raw counts when a finger is placed on the sensor is called CAPSENSE™ signal. Figure 59 shows
how the value of the signal changes with respect to the conversion gain.

raw count

CS

CP CP+CF

CF

maximum raw count = 2
N
-1

Signal 2

0

GCSD2

GCSD1

Signal 1

Baseline 1

Baseline 2
GCSD3

GCSD3 > GCSD2 >

GCSD1

Figure 59 Signal values for different conversion gains

Application Note 73 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Figure 59 shows three plots corresponding to three conversion gain values GCSD3, GCSD2, and GCSD1. An increase in
the conversion gain results in higher signal value. However, this increase in the conversion gain also moves the

raw count corresponding to CP (i.e., Baseline) towards the maximum value of raw count (2N-1). For very high
gain values, the raw count saturates as the plot of GCSD3 shows. Therefore, you should tune the conversion gain

to get a good signal value while avoiding saturation of raw count. Tune the CSD parameters such that when
there is no finger on the sensor, i.e. when CS = CP, the raw count = 85% of (2N-1) as Figure 60 shows. This ensures

maximum gain, with enough margin for the raw count to grow because of environmental changes, and not
saturate on finger touches.

raw count

CS

CP CP+CF

CF

maximum raw count = 2
N
-1

85 % of maximum

 raw count

Signal

0

GCSD

Figure 60 Recommended tuning

Conversion gain in dual IDAC mode

The equation for raw count in the dual IDAC mode, according to Equation 24 and Equation 12 is:

Equation 27. Dual IDAC mode raw counts

raw count = GCSD CS − (2N − 1)
 ICOMP

IMOD

Where,

ICOMP = Compensation IDAC current

GCSD is given by Equation 17 for sourcing IDAC mode and Equation 26 for sinking IDAC mode.

In both single IDAC and dual IDAC mode, tune the CSD parameters, so that when there is no finger on the
sensor, i.e. when CS = CP, the raw count = 85% of (2N-1), as Figure 61 shows, to ensure high conversion gain, to

avoid Flat-spots, and to avoid raw count saturation due to environmental changes.

Application Note 74 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

raw count

CS

CP CP+CF

CF

maximum raw

count = 2
N
-1

85 % of maximum

 raw count

Signal in dual

IDAC mode

0

ICOMP / VREF FSW

Gain in

Single IDAC

mode

Gain in

Dual IDAC

mode

Signal in single

IDAC mode

Figure 61 Recommended tuning in dual IDAC mode

As Figure 61 shows, the 85% requirement restricts to a fixed gain in single-IDAC mode, while in dual-IDAC
mode, gain can be increased by moving the CS axis intercept to the right (by increasing ICOMP) and
correspondingly decreasing the modulator IDAC (IMOD) to still achieve raw count = 85% of (2N-1) for CS = CP. Using

dual IDAC mode this way brings the following changes to the Raw Count versus CP graph:

a) Use of compensation IDAC introduces a non-zero intercept on the CS axis as given in Equation 28.

Equation 28. CS axis intercept with regards to ICOMP

CS axis intercept = (
 ICOMP

VREF FSW
)

The value of IMOD in the dual IDAC mode is half compared to the value of IMOD in the single IDAC mode (all other
parameters remaining the same), so the gain GCSD in the dual IDAC mode is double the gain in the single IDAC

mode according to Equation 17. Thus, the signal in the dual IDAC mode is double the signal in the single IDAC

mode for a given resolution N.

While manually tuning a sensor, keep Equation 17 and Equation 18 as well as the following points in mind:

1. Higher gain leads to increased sensitivity and better overall system performance. However, do not set the

gain such that raw counts saturate, as the plot of gain GCSD3 shows in Figure 59. It is recommended to set the
gain in such a way that the raw count corresponding to CP is 85 percent of the maximum raw count for both
the single IDAC and dual IDAC mode.

The sense clock frequency (FSW) should be set carefully; higher the frequency, higher the gain, but the

frequency needs to be low enough to fully charge and discharge the sensor as Equation 22 indicates.

2. Enabling the Compensation IDAC plays a huge role in increasing the gain; it will double the gain if set as
recommended above. Always enable the Compensation IDAC when it is not being used for general-purpose

applications.

3. Lower the modulation IDAC current, higher the gain. Adjust your IDAC to achieve the highest gain, but make

sure that the raw counts corresponding to CP have enough margin for environmental changes such as
temperature shifts, as indicated in Figure 60 and Figure 61.

Application Note 75 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

4. Increasing the number of bits of resolution used for scanning increases gain. An increase in resolution by
one bit will double the gain of the system, but also double the scan time according to Equation 8. A balance

of scan time and gain needs to be achieved using resolution.

5.3.2.1.2 Flat-spots

Ideally, raw counts should have a linear relationship with sensor capacitance as Figure 58 and Figure 61 show.
However, in practice, sigma delta modulators have non-sensitivity zones, also called flat-spots or dead-zones –
for a range of sensor capacitance values, the sigma delta modulator may produce the same raw count value as

Figure 62 shows. This range is known as a dead-zone or a flat-spot.

raw count

CS0

25%

50%

75%

2
N
-1

CP1 CP2 CP3 CP4 CP5 CP6

Flat spots

Figure 62 Flat-spots in raw counts versus sensor capacitance when direct clock is used

In the case of CAPSENSE™ CSD, these flat spots occur near 25, 50, and 75 percent of the maximum raw count
value (that is, near 25%, 50%, and 75% of 2N-1, where N = Scan resolution). These flat spots are prominent

when direct clock is used as Sense clock source. Flat-spots do not occur if PRS is used as the Sense Clock
source (see also section Using SmartSense to determine hardware parameters.

For almost all systems, we recommend using PRS as the Sense Clock source because it limits the impact of flat

spots and also provides EMI/EMC benefits as indicated in Sense clock. If your system requires a direct clock,
ensure that you use auto-calibration or avoid this raw count range when using manual calibration.

Flat-Spots Reduction Techniques

5. Calibrate rawcount to 85%.

In the case of CAPSENSE™ CSD, these flat-spots occur near 25, 50, and 75 percent of the maximum raw count
value (that is, near 25%, 50%, and 75% of 2N-1, where ‘N’ is the Scan resolution). Setting calibration to 85%
decrease the width of flat-spots significantly.

6. Use PRS clock

These flat-spots are prominent when direct clock is used as Sense clock source. Flat-spots do not occur if PRS
is used as the Sense Clock source (see also sectionUsing SmartSense to determine hardware parameters .
For almost all systems, we recommend using PRS as the Sense Clock source because it limits the impact of flat-

spots and also provides EMI/EMC benefits as indicated in Sense clock sourceSense clock . If your system

requires a direct clock, ensure that you use auto-calibration or avoid this raw count range when using manual

calibration.

Application Note 76 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.2.2 Selecting CAPSENSE™ hardware parameters

CAPSENSE™ hardware parameters govern the conversion gain and CAPSENSE™ signal. Table 8 lists the
CAPSENSE™ hardware parameters that apply to CSD sensing method. The following subsection gives guidance

on how to adjust these parameters to achieve optimal performance for CAPSENSE™ CSD system.

For simplicity of documentation, this design guide shows selecting the CAPSENSE™ parameters in PSoC™

Creator. You can use the same procedure to set the parameters in ModusToolbox™. However, in
ModusToolbox™, you set the Sense clock and Modulator clock using divider values while in the PSoC™ Creator
you specify the frequency value directly in the configurator. For more details on configuring CAPSENSE™, see
the Component datasheet / middleware document.

 CAPSENSE™ component hardware parameters

Sl. No. CAPSENSE™ parameter in PSoC™ Creator CAPSENSE™ parameter in ModusToolbox™

1 Sense cock frequency Sense clock divider

2 Sense clock source Sense clock source

3 Modulator clock frequency Modulator clock divider

4 Modulator IDAC Modulator IDAC

5 Compensation IDAC Compensation IDAC

6 Scan resolution Scan resolution

5.3.2.2.1 Using SmartSense to determine hardware parameters

Parameters listed in Table 8 are CAPSENSE™ hardware parameters. Tuning these parameters manually for

optimal value is a time-consuming task. You can use SmartSense to determine these hardware parameters and

take it as an initial value for manual tuning. You can fine-tune these values to further optimize the scan time,

SNR, power consumption, or improving EMI/EMC capability of the CAPSENSE™ system.

Set the tuning mode to SmartSense and configure default values for parameters other than finger capacitance.
See the SmartSense section for the tuning procedure and use the Tuner GUI to read back all the hardware
parameters set by SmartSense. See the Component datasheet / middleware document for more details on

how to use the Tuner GUI.

Figure 63 shows the best hardware parameter values in the Tuner GUI that are tuned by SmartSense for a

specific hardware to sense a minimum finger capacitance of 0.1 pF.

Application Note 77 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Figure 63 Read-back hardware parameter values in Tuner GUI

5.3.2.2.2 Manually tuning hardware parameters

Sense clock parameters

There are two parameters that are related to Sense clock: Sense clock source and Sense clock frequency.

Sense clock source

Select “Auto” to let the Component automatically choose the best Sense clock source from Direct, PRSx, and
SSCx for each widget. If not selecting Auto, select the clock source based on the following:

• Use pseudo random sequence (PRSx) modes to remove flat-spots.

• Use spread spectrum clock (SSCx) modes for reducing EMI/EMC noise at a particular frequency. This feature

is available in PSoC™ 4 S-Series, PSoC™ 4100S Plus, PSoC™ 4100PS, and PSoC™ 6 family of devices. In this

case, the frequency of the sense clock is spread over a predetermined range.

• Use Direct clock for absolute capacitance measurement.

When selecting PRSx as the sense clock source, ensure that the sequence completes within one conversion
cycle; not letting the sequence complete may cause high noise in raw count. i.e., TPRS<<TSCAN.

For PRS clock, use the following equations to calculate one PRS sequence completion cycle and scan time.

Equation 29. Sensor scan time

TSCAN =
2N−1

FMOD
 , ℎ𝑒𝑟𝑒 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑆𝑐𝑎𝑛 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

Application Note 78 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Equation 30. PRS sequence period

TPRS =
2N_PRS−1

FSW
 , ℎ𝑒𝑟𝑒 𝑁_𝑃𝑅𝑆 𝑖𝑠 𝑒𝑖𝑡ℎ𝑒𝑟 8 𝑜𝑟 12

See the Component datasheet / middleware document for more details on the rules and recommendations
for SSCx selection.

Sense clock frequency

The sense clock frequency should be selected so that the sensor will charge and discharge completely in each
sense clock period as Figure 39 shows.

This requires that the maximum sense clock frequency be chosen per Equation 31.

Equation 31. Sense clock maximum frequency

𝐅𝐒𝐖(𝐦𝐚𝐱𝐢𝐦𝐮𝐦) =
𝟏

𝟏𝟎𝐑𝐒𝐞𝐫𝐢𝐞𝐬𝐓𝐨𝐭𝐚𝐥𝐂𝐏

Equation 32. Total series resistance

RSeriesTotal = REXT + RGPIO

Here, CP is the sensor parasitic capacitance, and RSeriesTotal is the total series-resistance, including the 500 

resistance of the internal switches, the recommended external series resistance of 560  (connected on PCB
trace connecting sensor pad to the device pin), and trace resistance if using highly resistive materials (example

ITO or conductive ink); i.e., a total of 1.06 k plus the trace resistance.

The value for CP can be estimated using the CSD Built-in-Self-test API; GetSensorCapacitance(). See the

Component datasheet / middleware document for details.

Equation 25 shows that it is best to use the maximum clock frequency to have a good gain; however, you
should ensure that the sensor capacitor fully charges and discharges as shown in Figure 39.

Generally, the CP of the shield electrode will be higher compared to sensor CP. For good liquid tolerance, the
shield signal should satisfy the condition mentioned in Shield electrode tuning theory. If it is not satisfied,
reduce the sense clock frequency further to satisfy the condition.

Modulator clock frequency

The modulator clock governs the conversion time for capacitance-to-digital conversion, also called the “sensor
scan time” (see Equation 8).

A lower modulator clock frequency implies the following:

Longer conversion time (see Equation 22 and Equation 20)

• Lower peak-to-peak noise on raw count because of longer integration time of the sigma-delta converter

• Wider Flat-spots

Select the highest frequency for the shortest conversion time and narrower flat spots for most cases. Use

slower modulator clock to reduce peak-to-peak noise in raw counts if required.

Application Note 79 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Modulation and compensation IDACs

CSD supports two IDACs: Modulation IDAC and Compensation IDAC that charge CMOD as Figure 35 shows. These
govern the Conversion gain in dual IDAC mode for capacitance-to-digital conversion. The CapSense
Component allows the following configurations of the IDACs:

• Enabling or disabling of Compensation IDAC

• Enabling or disabling of Auto-calibration for the IDACs

• DAC code selection for Modulator and Compensation IDACs if auto-calibration is disabled

Compensation IDAC

Enabling the compensation IDAC is called “dual IDAC” mode, and results in increased signal as explained in
Conversion gain in dual IDAC modeConversion gain in dual IDAC . Enable the compensation IDAC for most

cases. Disable the compensation IDAC only if you want to free the IDAC for other general-purpose analog

functions.

Auto-calibration

This feature enables the firmware to automatically calibrate the IDAC to achieve the required calibration target

of 85%. It is recommended to enable auto-calibration for most cases. Enabling this feature will result in the
following:

• Fixed raw count calibration to 85% of max raw count even with part-to-part CP variation

• Avoids Flat-spots

• Automatically selects the optimum gain

If your design environment includes large temperature variation, you may find that the 85% IDAC calibration

level is too high, and that the raw counts saturate easily over large changes in temperature, leading to lower
SNR. If this is the case, you can adjust the calibration level lower by using CapSense_CSDCalibrateWidget()

in your firmware.

For proper functioning of CAPSENSE™ under diverse environmental conditions, it is recommended to avoid

very low or high IDAC codes. For a 7-bit IDAC, it is recommended to use IDAC codes between 18-110 from the
possible 0 to 127 range. You can use CAPSENSE™ tuner to confirm that the auto-calibrated IDAC values fall in

this recommended range. If the IDAC values are out of the recommended range, based on Equation 24,

Equation 25 and Equation 27, you may change the Vref or Fsw to get the IDAC code in proper range.

Disable IDAC auto-calibration if a change in CP needs to be detected by measuring the raw count level at reset,
for example:

• Detecting large variations in sensor CP across boards or layout problems

• Detecting finger touch at reset

• Advanced CAPSENSE™ methods like liquid-level sensing, for example, to have different raw count level for
different liquid levels at reset

Selecting DAC codes

This is not the recommended approach. However, this could be used only If you want to disable auto-

calibration for any reason. To get the IDAC code, you may first configure CAPSENSE™ Component with auto-
calibration enabled and all other hardware parameters the same as required for final tuning and read back the
calibrated IDAC values using Tuner GUI. Then, re-configure the CAPSENSE™ Component to disable auto-
calibration and use the obtained IDAC codes as fixed DAC codes read-back from the Tuner GUI.

Application Note 80 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Scan resolution

It governs the sensor scan time per Equation 29 and the conversion gain per Equation 24, Equation 25, and
Equation 27. Scan resolution needs to be selected to maintain a balance between the signal and scan time.

Higher scan resolution implies the following:

• Longer scan time per Equation 29

• Higher SNR on raw counts (increase in resolution increases the signal at a disproportionate rate to noise)

In general, it is recommended to tune the resolution to achieve as high SNR as possible; however if the system
is constrained on power consumption and/or response time, set the lowest resolution to achieve at-least 5:1
SNR in the end system. Note that you should tune the scan resolution for less than 10:1 SNR only if you have
scan time or power number constraints.

5.3.2.2.3 Tuning shield electrode

The shield related parameters need to be additionally configured or tuned differently when you enable the

Shield electrode in the CSD sensing method for liquid tolerance or reducing the Cp of the sensor.

Shield electrode tuning theory

Ideally, the shield waveform should be exactly the same as that of the sensor as explained in Driven-shield
signal and shield electrode. However, in practical applications, the shield waveform may have a higher

settling time and an overshoot error. Observe the sensor and shield waveform in the oscilloscope; an example
waveform is shown in Driven-shield signal and shield electrode. The shield waveform should settle to the

sensor voltage within 90% of ON time of the sense clock waveform and the overshoot error of the shield signal
with respect to VREF should be less than 10%.

If these conditions are not satisfied, you will observe a change in raw count of the sensors when touching the
shield hatch; in addition, if inactive sensors are connected to shield as mentioned in Inactive sensor

connection, touching one sensor can cause change in raw count on other sensors, which indicates that there is

cross talk if the shield electrode is not tuned properly.

In SmartSense, the sense clock frequency is automatically set. Check if these conditions are satisfied. If not
satisfied, switch to Manual tuning and set the Sense clock frequency manually so that these conditions are
satisfied. You can also tune the Shield SW resistance parameter to reduce the overshoot error.

Figure 64 Properly tuned shield waveform

Application Note 81 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Tuning shield-related parameters

Enable shield tank capacitor

Enabling a shield tank capacitor increases the drive strength of the shield thus allowing the shield signal to
settle to the sensor voltage faster as required. It is recommended to use the shield tank capacitor for PSoC™ 4A-

S and PSoC™ 6 MCU family of devices. For PSoC™ 4A, PSoC™ 4A-L, and PSoC™ 4A-M family of devices, the shield
tank capacitor does not prove very advantageous because it doubles the shield series resistance. It is

recommended to keep this option disabled for these device families.

Shield electrode delay

For proper operation of the shield electrode, the shield signal should match the sensor signal in phase. Due to
the difference in trace lengths of the sensor and shield electrodes, the shield waveform may arrive earlier to the

sensor waveform. You can use an oscilloscope to view both sensor and shield signals to verify this condition. If
they are not aligned, use this option to add delay to the shield signal to align the two signals. Available delays

vary depending on the device selected.

Shield SW resistance

This parameter controls the shield signal rise and fall times to reduce EMI. This parameter is valid only for

PSoC™ 4 S-Series, PSoC™ 4100S Plus, PSoC™ 4100PS, and PSoC™ 6 MCU family of devices. The default value of
shield switch resistance is Medium. Table 9 shows the effect of the Shield SW resistance value. You should

select this value based on the application requirement; in addition, ensure that it satisfies the conditions in
Shield electrode tuning theory.

 Shield SW resistance selection guidelines

Lower switch resistance Higher switch resistance

Large overshoot error

Higher electromagnetic emission

Faster settling time i.e., higher max sense clock

frequency

Smaller overshoot error

Lower electromagnetic emission

Slower settling time i.e., lower max sense clock

frequency

Number of shield electrodes

This parameter specifies the number of shield electrodes required in the design. Most designs work with one
dedicated shield electrode; however, some designs require multiple dedicated shield electrodes for ease of

PCB layout routing or to minimize the PCB real estate used for the shield layer. See Layout guidelines for
shield electrode.

Inactive sensor connection

When the shield electrode is enabled for liquid-tolerant designs, or if you want to use shield to reduce the
sensor parasitic capacitance, this option should be specified as “Shield”; otherwise, select “Ground”.

However, there is a risk of higher radiated emission due to inactive sensors getting connected to Shield. In such
situations, use the CAPSENSE™ API to manually control inactive sensor connections. Instead of connecting all
unused sensors to the shield, connect only the opposing inactive sensors or inactive sensors closer to the

sensor being scanned to shield for reducing the radiated emission.

Application Note 82 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.2.3 Selecting CAPSENSE™ software parameters

CAPSENSE™ software parameters govern the sensor status based on the raw count of a sensor. Table 10
provides a list of CAPSENSE™ software parameters. These parameters apply to both CSD and CSX sensing

methods. This section defines these parameters with the help of Baseline, and provides guidance on how to
adjust these parameters for optimal performance of your design. Table 11 shows the recommended values for
the software threshold parameter and they are applicable for most of the designs. However, if there are any
external noise present in the end system, you must modify these thresholds accordingly to avoid any sensor

false trigger.

 CAPSENSE™ component widget threshold parameters

Sl. No. CAPSENSE™ component parameter name in PSoC™ Creator / ModusToolbox™

1. Finger threshold

2. Noise threshold

3. Hysteresis

4. ON debounce

5. Sensor auto-reset

6. Low baseline reset

7. Negative noise threshold

 Recommended values for the threshold parameters

Sl. No. CAPSENSE™ threshold parameter Recommended value

1. Finger threshold 80 percent of signal

2. Noise threshold 40 percent of signal

3. Hysteresis 10 percent of signal

4. ON debounce 3

5. Low baseline reset 30

6. Negative noise threshold 40 percent of signal

5.3.2.3.1 Baseline

After tuning the CAPSENSE™ Component for a given CP, the raw count value of a sensor may vary gradually due
to changes in the environment such as temperature and humidity. Therefore, the CAPSENSE™ Component

creates a new count value known as baseline by low-pass filtering the raw counts. Baseline keeps track of, and
compensates for, the gradual changes in raw count. The baseline is less sensitive to sudden changes in the raw
count caused by a touch. Therefore, the baseline value provides a reference level for computing signal.

Figure 65 shows the concept of raw count, baseline, and signal.

Application Note 83 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

baseline

raw count

signal = raw count - baseline

sensor OFF sensor OFFsensor ON

Figure 65 Raw count, baseline, and signal

5.3.2.3.2 Baseline update algorithm

To properly tune the CAPSENSE™ software, that is, the threshold parameters, it is important to understand how
baseline is calculated and how the threshold parameters affect the baseline update.

Baseline is a low-pass-filtered version of raw counts. As Figure 66 shows, baseline is updated by low-pass-

filtering raw counts if the current raw count is within a range of (Baseline –Negative noise threshold) to

(Baseline + Noise threshold). If the current raw count is higher than baseline by a value greater than noise

threshold, baseline remains at a constant value equal to prior baseline value.

Noise Threshold

Negative Noise Threshold

Baseline

Baseline Is Not Updated

Baseline Updates

Figure 66 Baseline update algorithm

Application Note 84 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

If the current raw count is below baseline minus negative noise threshold, baseline again remains constant at a
value equal to prior baseline value for Low baseline reset number of sensor scans. If the raw count

continuously remains lower than baseline minus noise threshold for low baseline reset number of scans, the
baseline is reset to the current raw count value and starts getting updated again, as Figure 67 shows.

Negative Noise Threshold

Raw Count falls below baseline by a count

> Negative noise threshold

Baseline gets reset and starts Updating

again

Baseline remains constant for Low-

Baseline-Reset number of scans

Figure 67 Low baseline reset

5.3.2.3.3 Finger threshold

The finger threshold parameter is used along with the hysteresis parameter to determine the sensor state, as

Equation 33 shows.

Equation 33. Sensor state

Sensor State = {
ON if (Signal ≥ Finger Threshold + Hysteresis)

OFF if (Signal ≤ Finger Threshold − Hysteresis)

Note that signal in the above equation refers to the difference: raw count – baseline, when the sensor is
touched, as Figure 65 shows.

It is recommended to set finger threshold to 80 percent of the signal. This setting allows enough margin to

reliably detect sensor ON/OFF status over signal variations across multiple PCBs.

5.3.2.3.4 Hysteresis

The hysteresis parameter is used along with the finger threshold parameter to determine the sensor state, as
Equation 33 and Figure 68 show. Hysteresis provides immunity against noisy transitions of sensor state. The
hysteresis parameter setting must be lower than the finger threshold parameter setting. It is recommended to

set hysteresis to 10 percent of the signal.

Application Note 85 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Sensor ONSensor OFF Sensor OFF

Finger Threshold + Hysteresis

Finger Threshold - Hysteresis

Finger Threshold

Figure 68 Hysteresis

5.3.2.3.5 Noise threshold

For single-sensor widgets, such as buttons and proximity sensors, the noise threshold parameter sets the raw
count limit above which the baseline is not updated, as Figure 66 shows. In other words, the baseline remains
constant as long as the raw count is above baseline + noise threshold. This prevents the baseline from following
raw counts during a finger touch.

The noise threshold value should always be lower than the finger threshold – hysteresis. It is recommended to

set noise threshold to 40 percent of the signal.

If the noise threshold is set to a low value, the baseline will remain constant if raw counts suddenly increase by
a small amount, say because of small shifts in power supply or shifts in ground voltage because of high GPIO

sink current and so on.

On the other hand, if the noise threshold is set to a value close to finger threshold – hysteresis, the baseline may

keep updating even when the sensor is touched. This will lead to reduced signal (note that signal = raw count –
baseline) and the sensor state may not be reported as ON.

5.3.2.3.6 Negative noise threshold

The negative noise threshold parameter sets the raw count limit below which the baseline is not updated for
the number of samples specified by the low baseline reset parameter as Figure 67 shows.

Negative noise threshold ensures that the baseline does not fall low because of any high amplitude repeated

negative noise spikes on raw count caused by different noise sources such as electrostatic discharge (ESD)
events.

It is recommended to set the negative noise threshold parameter value to be equal to the noise threshold
parameter value.

Application Note 86 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.2.3.7 Low baseline reset

This parameter is used along with the negative noise threshold parameter. It counts the number of abnormally
low raw counts required to reset the baseline as Figure 67 shows.

If a finger is placed on the sensor during device startup, the baseline is initialized to the high raw count value at
startup. When the finger is removed, raw counts fall to a lower value. In this case, the baseline should track the

low raw counts. The Low Baseline Reset parameter helps to handle this event. It resets the baseline to the low
raw count value when the number of low samples reaches the low baseline reset number. Note that in this
case, when the finger is removed from the sensor, the sensor will not respond to finger touches for a low
baseline reset time given by Equation 34.

Equation 34. Low baseline reset time

Low Baseline Reset Time =
Low Baseline Reset parameter value

Scan Rate

The low baseline reset parameter should be set to meet following conditions:

• Low baseline reset time is greater than the time for which negative noise (due to noise sources such as ESD

events) is expected to last

• Low baseline reset time is lower than the time in which a sensor is expected to start responding again after
the finger kept on sensor during device startup is removed from the sensor.

The low baseline reset parameter is generally set to a value of 30.

5.3.2.3.8 Debounce

This parameter selects the number of consecutive CAPSENSE™ scans during which a sensor must be active to

generate an ON state from the component. Debounce ensures that high-frequency, high-amplitude noise does
not cause false detection.

Equation 35. Sensor state with debounce

Sensor State = {

ON if (Signal ≥ Finger Threshold + Hysteresis) for scans ≥ debounce

OFF if (Signal ≤ Finger Threshold − Hysteresis)

OFF if (Signal ≥ Finger Threshold + Hysteresis) for scans < 𝑑𝑒𝑏𝑜𝑢𝑛𝑐𝑒

The Debounce parameter impacts the response time of a CAPSENSE™ system. The time it takes for a sensor to

report ON after the raw counts value have increased above finger threshold + hysteresis because of finger
presence, is given by Equation 36.

Equation 36. Relationship between debounce and sensor response time

Sensor response time =
Debounce

Scan Rate

The Debounce parameter is generally set to a value of ‘3’ for reliable sensor status detection. It can be raised or
lowered based on the noise aspects of the end user system.

Application Note 87 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.2.3.9 Sensor auto reset

Enabling the Sensor Auto Reset parameter causes the baseline to always update regardless of whether the
signal is above or below the noise threshold.

When auto reset is disabled, the baseline only updates if the current raw count is within a range of (Baseline –
Negative Noise Threshold) to (Baseline + Noise Threshold) as Figure 66 shows and the Baseline update

algorithm describes. However, when Auto Reset is enabled, baseline is always updated if the current raw count
is higher than (Baseline – Negative Noise Threshold) as Figure 69 shows.

Noise Threshold Sensor state reported as OFF even though

finger is still on sensor

Baseline always updates even though (Raw

Count – Baseline) > Noise Threshold

Figure 69 Baseline update with sensor auto reset enabled

Because the baseline is always updated when sensor auto reset is enabled, this setting limits the maximum
time duration for which the sensor will be reported as pressed. However, enabling this parameter prevents the

sensors from permanently turning on if the raw count suddenly rises without anything touching the sensor.
This sudden rise can be caused by a large power supply voltage fluctuation, a high-energy RF noise source, or a

very quick temperature change.

Enable this option if you have a problem with sensors permanently turning on when the raw count suddenly

rises without anything touching the sensor.

5.3.2.3.10 Multi-frequency scan

Enabling multi-frequency scan, the CAPSENSE™ component performs a sensor scan with three different sense
clock frequencies and obtains corresponding difference count. The median of the sensor difference-count is

selected for further processing. Use this feature for robust operation in the presence of external noise at a
certain sensor scan frequency. This option is not available in SmartSense FullAutotune mode. See the code
example CE227719 CAPSENSE™ with multi-frequency scan.

https://www.cypress.com/documentation/code-examples/ce227719-capsense-multi-frequency-scan

Application Note 88 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.2.4 Button widget tuning

Figure 70 illustrates an overview of the CSD button tuning procedure.

Start

Measure SNR

Set initial parameters Hardware parameters

Is SNR > 5
Increase Resolution*/

enable filters

Does the system meet timing
requirements?

Set the following system thresholds based on signal
value with a finger present:

Finger Threshold = 80% of Singal
Noise Threshold = 40% of Signal

Negative Noise Threshold = 40% of Signal
Hysteresis = 10% of Signal

Debounce = 3
Low Baseline Reset = 30

End

Stage 1

Yes

Yes

No

Measure sensor parasitic capacitance (Cp)

Calculate and set Sense clock frequency and Init sub
conversions

Stage 2

Stage 3

Stage 5

Stage 4

Decrease Resolution*/
adjust filter parameters

Figure 70 CSD button widget tuning flowchart

* For fifth-generation CAPSENSE™, change number of sub-conversions (NSub) instead of resolution.

Application Note 89 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

To review the hardware design, see the Sensor construction and PCB layout guidelines sections in the Design
considerations chapter. Also, see the Tuning debug FAQs section for guidelines on advanced debug.

As explained in Section 5.1, Manual tuning requires effort to tune optimum CAPSENSE™ parameters, but allows
strict control over characteristics of capacitive sensing system, such as response time and power consumption.
The button is tuned for reliable touch detection to avoid false triggers in noisy environment.

The CE230926 PSoC™ 4: CAPSENSE™ CSD button tuning explains tuning of self-capacitance based button
widgets in the Eclipse IDE for ModusToolbox™ using the CAPSENSE™ Tuner GUI. For details on the Component

and all related parameters, see the Component datasheet.

5.3.2.5 Slider widget tuning

A slider has many segments, each of which is connected to the CAPSENSE™ input pins of the PSoC device.

Unlike the simple on/off operation of a button widget sensor, slider widget sensors work together to track the
location of a finger or other conductive object. Because of this, the slider layout design should ensure that the

CP of all the segments in a slider remain as close as possible. Keeping similar CP values between sensors will
help minimize the tuning effort and ensure an even response across the entire slider. See Slider design for

details on slider layout design guidelines to avoid nonlinearity in the centroid, ensure that the signal from all

the slider segments is equal, as Figure 71 shows, when a finger is placed at the center of the slider segment. If
the signal of the slider segments is different, then the centroid will be nonlinear, as Figure 72 shows. Note that

in PSoC™ Creator and in ModusToolbox™, a centroid of 0xFFFF and 0x0000 is reported respectively when a

finger is not detected on the slider, or when none of the slider segments report a difference count value greater
than the Finger Threshold parameter.

Figure 71 Response of centroid versus finger location when signals of all slider elements are equal

Note: Signal = Raw Count – Baseline

0

20

40

60

80

100

120

0

20

40

60

80

100

120

SLD0 SLD1 SLD2 SLD3 SLD4

C
e

n
tr

o
id

Si
gn

al

Finger Position

Signal0

Signal1

Signal2

Signal3

Signal4

Centroid

https://github.com/Infineon/mtb-example-psoc4-capsense-csd-button-tuning
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd

Application Note 90 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Figure 72 Response of centroid versus finger location when the signal of all slider elements are

different

A linear response for the reported finger position (that is, the Centroid position) versus the actual finger
position on a slider requires that the slider design is such that whenever a finger is placed anywhere between
the middle of the segment SLDn and middle of segment SLDn-1, other than the exact middle of slider segments,

exactly two sensors report a valid signal9. If a finger is placed at the exact middle of any slider segment, the

adjacent sensors should report a difference count = noise threshold. These conditions are required since the
centroid position calculation is based on the closest segment to the finger and two neighboring segments as
shown in Equation 37.

Equation 37. Centroid algorithm used by CAPSENSE™ component in PSoC™ Creator

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (
𝑆𝑥+1 − 𝑆𝑥−1

𝑆𝑥+1 + 𝑆𝑥 + 𝑆𝑥−1
+ 𝑥) ∗

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

(𝑛 − 1)

Where,
Resolution = API resolution set in the CAPSENSE™ Component Customizer

n = Number of sensor elements in the CAPSENSE™ Component Customizer

𝑥 = Index of element which gives maximum signal

𝑆𝑖 = Different counts (with subtracted noise threshold value) of the slider segment

Figure 73 shows an overview of the CSD slider tuning procedure.

9 Here, a valid signal means that the difference count of the given slider segment is greater than or equal to the noise threshold value.

0

50

100

150

0

100

200

SLD0 SLD1 SLD2 SLD3 SLD4

C
e

n
tr

o
id

Si
gn

al

Finger Position

Signal0

Signal1

Signal2

Signal3

Signal4

Application Note 91 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Start

Set initial hardware parameters

Calculate Sense Clock Frequency

Get the Upper and Lower crossover points (UCP and LCP)
and Capture the peak-to-peak noise

Are UCPs SNR > 5 and
LCPs > (2*Pk-to-Pk

noise)?

Increase the
*Scan resolution

by 1 bit

Set the following systems thresholds based
on raw count value with a finger present:

Finger Threshold = 80% of UCP
Noise Threshold = LCP

Negative Noise Threshold = LCP
Hysteresis = 10% of UCP

ON debounce = 3
Low Baseline Reset = 30

No

Yes

Measure Parasitic Capacitance Cp

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Figure 73 CSD slider widget tuning flowchart

*For fifth-generation CAPSENSE™, change number of sub-conversions (NSub) instead of resolution.

Application Note 92 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

The upper crossover point (UCP) and lower crossover point (LCP) are obtained as shown in Figure 74. Refer to
CE229521 – PSoC™ 4 CAPSENSE™ CSD Slider tuning which demonstrates how to manually tune a self-

capacitance based Slider widget on PSoC™ Creator and CE230493 – PSoC™ 4: CAPSENSE™ CSD Slider tuning
on Eclipse IDE for ModusToolbox™.

Figure 74 Difference count (delta) vs finger position

5.3.2.6 Touchpad widget tuning

A self-capacitance-based touchpad is essentially two sliders implemented in the horizontal and vertical
directions. Hence, it is also tuned in a similar way as that of a slider, to obtain an even response across the
trackpad/touchpad. To gain true multi-touch performance, it is recommended to use mutual-capacitance

based touchpad. The centroid algorithm obtains the signals (diff-counts) from all the segments and calculates

the x and y position co-ordinates.

The CSD Touchpad reuses Slider’s centroid algorithm that is applied individually to row and column sensors
treated as simple sliders. Hence, the centroid position calculation formula for CSD Touchpad is same as

Equation 37.

5.3.2.6.1 CSD finger detection criteria

The touch in a CSD Touchpad is reported to the host when the following Finger detection criteria is satisfied:

1. 𝑍_𝑃𝑒𝑎𝑘 > (𝐹𝑖𝑛𝑔𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ± 𝐻𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠)
2. 𝑍_𝑃𝑒𝑎𝑘 > (𝐹𝑖𝑛𝑔𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ± 𝐻𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠) ∗ 𝑍3_𝐹𝑖𝑙𝑡_𝑆𝑐𝑎𝑙𝑒/2 → (At panel edge)

3. 𝑍_𝑃𝑒𝑎𝑘 > (𝐹𝑖𝑛𝑔𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ± 𝐻𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠) ∗ 𝑍3_𝐹𝑖𝑙𝑡_𝑆𝑐𝑎𝑙𝑒/4 → (At panel corner)

Where,

Z_Peak = Maximum Signal when the finger is present at the centre of the sensor

Z3_sum = Sum of Signals of segment with maximum signal and two neighbouring segments

Z3_Filt_Scale = (0.8 * Z3_Sum) / Finger Threshold

The Z3_Filt_Scale value ensures that the detected object is of the correct proportions.
Z3_sum (of both row and column) condition is checked to see if the absolute mass of the finger is large enough
to be recognized as a finger. The Z3_sum condition may prevent noise-induced false touches.

https://www.cypress.com/documentation/code-examples/ce229521-psoc-4-capsense-csd-slider-tuning
https://github.com/Infineon/mtb-example-psoc4-capsense-csd-slider-tuning

Application Note 93 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Figure 75 Z3_sum values on CAPSENSE tuner

Figure 76 shows an overview of the CSD touchpad tuning procedure.

Application Note 94 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Start

Measure Parasitic Capacitance (Cp)

Get the diff count at LTI position (Cross-Over point)

Capture the peak-to-peak noise of all segments

Is

 the

LTI satisfying SNR > 5 ?

Increase the *Scan

resolution by 1 bit

Set the following systems thresholds based on raw

count value with a finger present:

Finger Threshold = 80% of LTI

Noise Threshold = Max (40% of LTI, 2*Pk-to-Pk noise)

Negative Noise Threshold = same as NT

Hysteresis = (Max-Min at LTI) /2

ON debounce = 3

Low Baseline Reset = 30

Velocity = 2500

No

Yes

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Set the initial hardware parameters

Calculate Tx Clock Frequency

Figure 76 CSD touchpad widget tuning flowchart

*For fifth-generation CAPSENSE™, change number of sub-conversions (NSub) instead of resolution.
LTI measures the peak diff-count when a finger touch is centered between four sensors. The LTI signal count is
the average of the four peak sensors. This gives the least valid touch signal.

5.3.2.7 Proximity widget tuning

For tuning a proximity sensor, see AN92239 - Proximity sensing with CAPSENSE™.

http://www.cypress.com/documentation/application-notes/an92239-proximity-sensing-capsense

Application Note 95 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.3 CSX sensing method (third- and fourth-generation)

This section explains the basics of manual tuning using the CSX sensing method. It also explains the hardware
parameters that influence a manual tuning procedure.

5.3.3.1 Basics

5.3.3.1.1 Conversion gain and CAPSENSE™ signal

In a mutual-capacitance sensing system, the Rawcountcounter is directly proportional to the mutual-capacitance
between the Tx and Rx electrodes, as Equation 38 shows.

Equation 38. Raw count relationship to sensor capacitance

RawcountCounter = GCSX CM

Where,
GCSX = Capacitance to digital conversion gain of CAPSENSE™ CSX
CM = Mutual-capacitance between the Tx and Rx electrodes.

Figure 78 shows the relationship between raw count and mutual capacitance of the CSX sensor. The tunable

parameters of the conversion gain in Equation 39 are FTX, NSub, FMOD and IDAC.

The approximate value of this conversion gain is:

Equation 39. Capacitance to digital converter gain

GCSX =
2 VTX FTX MaxCount

IDAC

Equation 40. MaxCount equation

MaxCount =
FMod NSub

FTX

Where,

VTX = Voltage at the Tx node of the sensor as shown in Figure 77

VTX = VON − VOFF

The value of VTX is always VDDIO or VDDD (if VDDIO is not available) if the Tx clock frequency can completely charge
and discharge the Tx electrode. FTX is the Tx clock frequency, IDAC is the current drawn for charging and

discharging the CINT capacitors, and NSub is the number of sub-conversions.

V

t

VOFF

0

T = 1/FTX

VON

Figure 77 Voltage at Tx node of the CSX sensor

Application Note 96 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Note that the raw count observed from the Component is given by Equation 41. See CAPSENSE™ CSX sensing
method (third- and fourth-generation) for more details on Rawcountcomponent.

Equation 41. 𝑅𝑎𝑤𝑐𝑜𝑢𝑛𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝑅𝑎𝑤𝑐𝑜𝑢𝑛𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑀𝑎𝑥𝐶𝑜𝑢𝑛𝑡 − 𝑅𝑎𝑤𝑐𝑜𝑢𝑛𝑡𝐶𝑜𝑢𝑛𝑡𝑒𝑟

Figure 78 Raw count vs Sensor mutual-capacitance

5.3.3.2 Selecting CAPSENSE™ hardware parameters

CAPSENSE™ hardware parameters govern the conversion gain and. Table 12 lists the CAPSENSE™ hardware

parameters that apply to the CSX sensing method. Table 12 also shows the mapping of each parameter in the

PSoC™ Creator CAPSENSE™ component to the one in the ModusToolbox™ middleware. For simplicity of

documentation, this design guide shows selecting the CAPSENSE™ parameter using the CAPSENSE™

configurator in PSoC™ Creator. The same procedure could be followed in configuring CAPSENSE™ in
ModusToolbox™. However, in ModusToolbox™, you set the Tx clock and Modulator clock using divider values.
On the other hand, in PSoC™ Creator, you specify the frequency value directly in the configurator. See

Component datasheet / middleware document.

 CAPSENSE™ signal component hardware parameters

Sl # CAPSENSE™ parameter in PSoC™ Creator CAPSENSE™ parameter in ModusToolbox™

1 Modulator clock frequency Modulator clock divider

2 Tx clock source Tx clock source

3 Tx clock frequency Tx clock divider

4 IDAC IDAC

5 Number of sub-conversions Number of sub-conversions

Application Note 97 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.3.2.1 Tx clock parameters

There are two parameters that are related to the Tx clock: Sense clock source and Sense clock frequency.

Tx clock source

Select “Auto” to let the Component automatically choose the best Tx clock source between Direct and Spread
spectrum clock (SSCx) for each widget. If not selecting Auto, select the clock source based on the following:

• Direct – Clock signal with a fixed clock frequency.

Use this option for most cases.

• Spread spectrum clock (SSCx) – If you chose this option, the Tx clock signal frequency is dynamically spread

over a predetermined range. Use this option for reduced EMI interference and avoiding Flat-spots.

However, when selecting SSCx clock, you need to select the Tx clock frequency, Modulator clock frequency,
and number of sub conversion such that the conditions mentioned in Component datasheet /

ModusToolbox™ CAPSENSE™ configurator guide for SSCx clock source selection are satisfied.

Tx clock frequency

The Tx clock frequency determines the duration of each sub-conversion as explained in the CAPSENSE™ CSX

sensing method (third- and fourth-generation) section. The Tx clock signal must completely charge and

discharge the sensor parasitic capacitance; it can be verified by checking the signal in an oscilloscope, or it can

be set using the Equation 42. In addition, you should ensure that the auto-calibrated IDAC code lies in the mid-
range (for example, 30-90) for the selected FTX. If the auto-calibrated IDAC code lies out of the recommended
range, tune FTX such that it IDAC falls in the recommended range and satisfies Equation 42.

Equation 42. Condition for selecting Tx clock frequency

FTX <
1

10RSeriesTxCPTx

To minimize the scan time, as Equation 43 shows, it is recommended to use the maximum Tx clock frequency
available in the component drop-down list that satisfies the criteria.

Equation 43. Scan time of CSX sensor

T𝐶𝑆𝑋 =
NSub

FTX

Where, NSub = Number of sub-conversions.

Additionally, if you are using the SSCx clock source, ensure that you select the Tx clock frequency that meets

the conditions mentioned in Component datasheet / middleware document / ModusToolbox™ CAPSENSE™

configurator guide in addition to these conditions.

The maximum value of FTX depends on the selected device. For the PSoC™ 4 S-Series, PSoC™ 4100S Plus,
PSoC™ 4100PS, and PSoC™ 6 MCU family of devices, the maximum FTX is 3000 kHz and for other devices it is 300
kHz.

http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
https://www.cypress.com/file/455231/download
https://www.cypress.com/file/455231/download
https://www.cypress.com/file/455231/download

Application Note 98 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.3.2.2 Modulator clock frequency

It is best to choose the highest allowed clock frequency for the given device because a higher modulator clock
frequency leads to a higher sensitivity/signal, increased accuracy, and lower noise for a given CM to digital count

conversion as Equation 30 and Equation 31 indicate. Also, a higher value of Fmod/Ftx ensures lower width of
Flat- in CM to raw count conversion.

5.3.3.2.3 IDAC

It is recommended to enable IDAC auto-calibration. It is best to avoid very high and very low IDAC codes. The
recommended IDAC code range is between 30-90. If the IDAC values are away from the recommended range,
tune the Tx clock frequency to adjust the IDAC level. If the IDAC is failing to calibrate properly, it may be due to

low CM in the design. Refer to the section I am observing a low CM for my CSX button for mitigating impact of

low CM in the design.

5.3.3.2.4 Number of sub-conversions

The number of sub-conversions decides the sensitivity of the sensor and sensor scan time. From Equation 14
for a fixed modulator clock and Tx clock, increasing the number of sub-conversions (𝑁𝑆𝑢𝑏) increases the signal
and SNR. However, increasing the number of sub-conversions also increases the scan time of the sensor per

Equation 44.

Equation 44. CSX scan time

Scan time =
NSub

FTX

Initially, set the value to a low number (for example, 20), and use the Tuner GUI to find the SNR of the sensor. If

the SNR is not > 5:1 with the selected NSub, try to increase the NSub in steps such that the SNR requirement is

met.

5.3.3.3 Selecting CAPSENSE™ software parameters

CAPSENSE™ software parameters for mutual-capacitance are the same as that for self-capacitance; therefore,

these parameters could be selected as mentioned in the section Selecting CAPSENSE™ software parameters.

5.3.3.4 Button widget tuning

Figure 79 illustrates an overview of the CSX button tuning procedure.

Application Note 99 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Start

Measure SNR

Set initial parameters Hardware parameters

Is SNR > 5
Increase Number of

sub conversion/
enable filters

Does the system meet timing
requirements?

Set the following system thresholds based on signal
value with a finger present:

Finger Threshold = 80% of Singal
Noise Threshold = 40% of Signal

Negative Noise Threshold = 40% of Signal
Hysteresis = 10% of Signal

Debounce = 3
Low Baseline Reset = 30

End

Stage 1

Yes

Yes

No

Measure sensor parasitic capacitance (Cp)

Calculate and set Tx clock frequency

Stage 2

Stage 3

Stage 5

Stage 4

Decrease Number of
Sub conversion/adjust

filter parameters

Figure 79 CSX button widget tuning example

Application Note 100 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

* To review the hardware design, see the Sensor construction and PCB layout guidelines sections in the
Design considerations chapter. Also, see the Tuning debug FAQs section for guidelines on advanced debug.

The CE230660 PSoC™ 4: CAPSENSE™ CSX button tuning explains tuning of mutual-capacitance based button
widgets in the Eclipse IDE for ModusToolbox™ and CE228931 – PSoC™ 4 CAPSENSE™ CSX button tuning in
PSoC™ Creator using the CAPSENSE™ tuner. For details on the Component and all related parameters, see the

Component datasheet.

5.3.3.5 Touchpad widget tuning

Mutual-capacitance based touchpad widget supports up to three simultaneous finger touches. A slightly
different Centroid algorithm compared to CSD touchpad is applied in a CSX touchpad widget. A 3x3 algorithm is

used for calculating the X and Y position using Centroid algorithm as shown in Equation 45 and Equation 46

respectively.

Equation 45. Calculating X-position using centroid algorithm in CSX touchpad

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑋 = (
𝑆𝑥+1 − 𝑆𝑥−1

𝑆3𝑥3
+ 𝑥) ∗

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑋

(𝑛𝑥 − 1)

Where,

ResolutionX = Maximum X-axis position

nx = Number of sensor elements in the X-direction

x = Index of element which gives maximum signal

𝑆𝑥+1 = Sum of three neighbor elements at the left from maximum (x)

𝑆𝑥−1 = Sum of three neighbor elements at the right from maximum (x)

𝑆3𝑥3 = Total sum of 3x3 difference array

Equation 46. Calculating Y-position using centroid algorithm in CSX touchpad

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑌 = (
𝑆𝑦+1 − 𝑆𝑦−1

𝑆3𝑥3
+ 𝑦) ∗

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑌

(𝑛𝑦 − 1)

Where,

ResolutionY = Maximum Y-axis position

ny = Number of sensor elements in the Y-direction

y = Index of element which gives maximum signal

𝑆𝑦+1 = Sum of three neighbor elements at the top from maximum (y)

𝑆𝑦−1 = Sum of three neighbor elements at the bottom from maximum (y)

https://github.com/Infineon/mtb-example-psoc4-capsense-csx-button-tuning
https://www.cypress.com/documentation/code-examples/ce228931-psoc-4-capsense-csx-tuning
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd

Application Note 101 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.3.5.1 CSX finger detection criteria

The touch in a CSX touchpad is reported to the host when the following Finger detection criteria is satisfied:

1. Z_Peak > Finger threshold ± Hysteresis

2. Z9_Sum condition

• Z9_Sum > ((Finger threshold + Hysteresis) * Z9_Filt_Scale) (At panel core)

• Z9_Sum > ((Finger threshold + Hysteresis) * Z9_Filt_Scale / 2) (At panel edge)

• Z9_Sum > ((Finger threshold + Hysteresis) * Z9_Filt_Scale / 4) (At panel corner)

3. Z8_sum condition

• Z8_sum > Z_peak * Z8_Filt_Scale (At panel core)

• Z8_sum > Z_peak * Z8_Filt_Scale / 2 (At panel edge)

• Z8_sum > Z_peak * Z8_Filt_Scale / 4 (At panel corner)

Where,

Z_peak = Maximum signal obtained

Z9_sum = Total sum of 3x3 difference array

Z8_sum = Z9_Sum – Z_peak

Z9_Filt_Scale = (0.8 * Z9_Sum)/Finger threshold

Z8_Filt_Scale = (0.8 * Z8_Sum)/Finger threshold

These values ensure that the detected object is of the correct proportions.

• Z8_sum condition is checked to see if the relative mass of the finger is large enough to be recognized as a

finger. This is done to discard very high noise in a segment, when the neighbouring sensors have no signal
detected.

• Z9_sum condition is checked to see if the absolute mass of the finger is large enough to be recognized as a

finger. Similar to the Z8 condition, the Z9 condition may prevent noise-induced false touches.

Application Note 102 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Figure 80 3x3 matrix obtained in CAPSENSE™ tuner

Figure 81 illustrates an overview of the CSX touchpad tuning procedure.

Application Note 103 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Start

Measure Parasitic Capacitance (Cp)

Set initial hardware parameters

Get the diff count at LTI position
Capture the peak-to-peak noise of all segments

Is
 the

LTI satisfying SNR > 5 ?

Increase the Number
of Sub-conversions

Set the following systems thresholds based on raw count
value with a finger present:

Finger Threshold = 80% of LTI
Noise Threshold = Max (40% of LTI, 2*Pk-to-Pk noise)

Negative Noise Threshold = same as NT
Hysteresis = (Max-Min at LTI) /2

ON debounce = 3
Low Baseline Reset = 30

Velocity = 2500

No

Yes

Calculate Tx Clock Frequency

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Figure 81 CSX touchpad widget tuning flowchart

LTI measures the peak diff-count when a finger touch is centered between the four sensors. The LTI signal
count is the average of the four peak sensors. This gives the least valid touch signal.

Application Note 104 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.4 CSD-RM sensing method (fifth-generation)

This section explains the basics of manual tuning using CSD-RM sensing method (Fifth-Generation). It also
explains the hardware and software parameters that influence the CSD-RM sensing method and the procedure

of manual tuning for button, slider, touchpad and proximity widgets.

5.3.4.1 Basics

5.3.4.1.1 Conversion gain and CAPSENSE™ signal

Conversion gain will influence how much signal the system sees for a finger touch on the sensor. If there is

more gain, the signal is higher, and a higher signal means a higher achievable Signal-to-noise ratio (SNR).
Note that an increased gain may result in an increase in both signal and noise. However, if required, you can

use firmware filters to decrease noise. For details on available firmware filters, see Table 7.

Conversion gain in single CDAC

In the single CDAC mode, the raw count is directly proportional to the sensor capacitance.

Equation 47. Raw count relationship to sensor capacitance

raw count = GCSD CS

Where,

CS = Sensor capacitance

CS = CP if there is no finger present on sensor

CS = (CP + CF) when there is a finger present on the sensor

GCSD = Capacitance to digital conversion gain of CAPSENSE™ CSD. The approximate value of this conversion gain

according to Equation 18 and Equation 47 is shown using Equation 48.

Equation 48. Capacitance to digital converter gain

GCSD = MaxCount
1

SnsClkDiv. Cref

Where, Maxcount = NSub ∗ SnsClkDiv

The equation for raw count in the single CDAC mode, according to Equation 48 and Equation 47 is shown in
Equation 49.

Equation 49. Single CDAC mode raw counts

raw count = NSub

CS

Cref

Where,

NSub = Number of sub-conversions

SnsClkDiv = sense clock divider

CS = Sensor capacitance

Cref = Reference capacitance

Application Note 105 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Cref = RefCDACCode ∗ Clsb

RefCDACCode = Reference CDAC value

𝐶𝑙𝑠𝑏 = 8.86𝑓𝐹

The tunable parameters of the conversion gain are Cref, SnsClkDiv, and NSub. Figure 82 shows a plot of raw count
versus sensor capacitance.

raw count

CS

CP CP+CF

CF

Maxcount

CAPSENSE Signal

0

Slope of the line = GCSD

Figure 82 Raw count versus sensor capacitance

The change in raw counts when a finger is placed on the sensor is called CAPSENSE™ signal. Figure 83 shows

how the value of the signal changes with respect to the conversion gain.

Application Note 106 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

raw count

CS

CP CP+CF

CF

Maxcount

Signal 2

0

GCSD2

GCSD1

Signal 1

Baseline 1

Baseline 2
GCSD3

GCSD3 > GCSD2 > GCSD1

Figure 83 Signal values for different conversion gains

Figure 83 shows three plots corresponding to three conversion gain values GCSD3, GCSD2, and GCSD1. An increase in
the conversion gain results in higher signal value. However, this increase in the conversion gain also moves the

raw count corresponding to CP (i.e., Baseline) towards the maximum value of raw count (Maxcount). For very
high gain values, the raw count saturates as the plot of GCSD3 shows. Therefore, tune the conversion gain to get a

good signal value while avoiding saturation of raw count. Tune the CSD-RM parameters such that when there is
no finger on the sensor, i.e. when CS = CP, the raw count = 85% of Maxcount as Figure 84 shows. This ensures
maximum gain, with enough margin for the raw count to grow because of environmental changes, and not

saturate on finger touches.

Application Note 107 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

raw count

CS

CP CP+CF

CF

Maxcount

85 % of maximum
 raw count

Signal

0

GCSD

Figure 84 Recommended tuning

Conversion gain in dual CDAC mode

The equation for raw count in the dual CDAC mode, according to Equation 19 and Equation 47 is shown in

Equation 50.

Equation 50. Dual CDAC mode raw counts

raw count = GCSD CS − Maxcount ∗
2 ∗ Ccomp

CrefCompCLKdiv

Where,

Maxcount = NSub * SnsClkDiv

SnsClkDiv = Sense clock divider

NSub = Number of sub-conversions

Cref = Reference capacitance

Ccomp = Compensation capacitance

CompCLKDiv = CDAC compensation divider

CS = Sensor capacitance

Cref = RefCDACCode * Clsb

Ccomp=CompCDACCode * Clsb

RefCDACCode = Reference CDAC value

CompCDACCode = Compensation CDAC value

Clsb = 8.86fF

Application Note 108 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

GCSD is given by Equation 48.

In both single CDAC and dual CDAC mode, tune the CSD-RM parameters, so that when there is no finger on the
sensor, i.e. when CS = CP, the raw count = 85% of Maxcount, as Figure 85 shows, to ensure high conversion gain,
to avoid Flat-spots, and to avoid raw count saturation due to environmental changes.

Figure 85 Recommended tuning in dual CDAC mode

As Figure 85 shows, the 85% requirement restricts to a fixed gain in single-CDAC mode, while in dual-CDAC
mode, gain can be increased by moving the CS axis intercept to the right (by increasing CompClkDIV) and

correspondingly decreasing the modulator CDAC switching (SnsClkDIV) to still achieve raw count = 85% of
Maxcount for CS = CP. Using dual CDAC mode this way brings the following changes to the Raw Count versus CP

graph:

a. Use of compensation CDAC introduces a non-zero intercept on the CS axis as shown in Equation 51.

Equation 51. CS axis intercept with regards to Ccomp

Cs axis intercept = (
 2 ∗ CcompSnsClkDiv

CompClkDiv
)

b. The value of Cref in the dual CDAC mode is half compared to the value of Cref in the single CDAC mode (all
other parameters remaining the same), so the gain GCSD in the dual CDAC mode is double the gain in the

single CDAC mode according to Equation 25. Thus, the signal in the dual CDAC mode is double the signal in
the single CDAC mode for a given number of sub-conversions (Nsub).

While manually tuning a sensor, refer Equation 25, Equation 27 and the following points:

1. Higher gain leads to increased sensitivity and better overall system performance. However, do not set the
gain such that raw counts saturate, as the plot of gain GCSD3 shows in Figure 59. It is recommended to set the

gain in such a way that the raw count corresponding to CP is 85 percent of the maximum raw count for both

the single CDAC and dual CDAC mode.

2. The sense clock frequency (FSW) should be set carefully; higher the frequency, higher the CS sampling rate
which allows for more FSW periods and better noise averaging, but the frequency needs to be low enough to
fully charge and discharge the sensor as Equation 31 indicates.

raw count

CS

CP CP+CF

CF

Maxcount

85 % of maximum

 raw count

Signal in dual

CDAC mode

0

2*CCOMP.SnsClkDIV/

CompClkDIV

Gain in

Single

CDAC mode
Gain in

Dual

CDAC

mode

Signal in single

CDAC mode

Application Note 109 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

3. Enabling the compensation CDAC (baseline compensation) plays a huge role In increasing the gain; it will
double the gain if set as recommended in Conversion gain in dual CDAC mode. Always enable

Compensation CDAC, make sure the calibrated Cref is in valid range when enabling Compensation CDAC.

4. Lower the reference CDAC, higher the gain. Adjust your CDAC to achieve the highest gain, but make sure that
the raw counts corresponding to CP have enough margin for environmental changes such as temperature

shifts, as indicated in Figure 60 and Figure 61.

5. Increasing the number of sub-conversions used for scanning increases gain. An increase in number of sub-

conversions also increases the scan time according to Equation 8. A balance of scan time and gain need to

be achieved using number of sub-conversions (Nsub).

5.3.4.1.2 Flat-spots

Ideally, raw counts should have a linear relationship with sensor capacitance as Figure 58 and Figure 61 show.

However, in practice, RM converter has non-sensitivity zones, also called flat-spots or dead-zones – for a range
of sensor capacitance values, the RM converter may produce the same raw count value as Figure 86 shows.
This range is known as a dead-zone or a flat-spot.

Equation 52 shows the flat-spots relation to different CAPSENSE™ hardware parameters.

Equation 52. Flat-spots width

Flatspots Width ∝
Cs

2

CMOD
.

FSW

FMOD. Bal%

Where,

CS = Sensor capacitance

CMOD = Modulator capacitor

FSW = Frequency of the sense clock

FMOD = Modulator clock frequency

Bal% = Rawcount calibration percentage

raw count

CS0

25%

50%

75%

2
N
-1

CP1 CP2 CP3 CP4 CP5 CP6

Flat spots

Figure 86 Flat-spots in raw counts versus sensor capacitance when direct clock is used

Application Note 110 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Flat-spots reduction techniques

1. Set rawcount calibration to 85%.

As per Equation 52, flat-spots width is inversely proportional to calibration level. Setting calibration to 85%
decrease the width of flat-spots significantly.

2. Enable dithering.

An additional Dither CDAC is available in Fifth-Generation CAPSENSE™ architecture, which adds white noise

that moves the conversion point around the flat-spots region.

3. Enable PRS clock.

These flat-spots are prominent when direct clock is used as Sense clock source. Flat-spots are reduced if PRS is
used as the sense clock source (see also section Using SmartSense to determine hardware parameters). PRS

clock can results in a slight reduction of signal or sensitivity at higher rawcount calibration. Recommended to

set the rawcount calibration to 65% when PRS is used as clock source.

4. Use larger CMOD.

The flat-spots width is inversely proportional to the CMOD used. Fifth-Generation architecture supports CMOD upto

10 nF and typical value is 2.2 nF. And increasing CMOD have the adverse effect of increasing the noise,

initialization time and minimum signal required to detect.

5. Increase sense clock divider.

Increasing sense clock divider decreases flat-spots width but increases the scan time. If the flat-spot is
detected, increase the Sense clock divider such that the scan time requirement is met.

Table 13 lists different the flat-spots reduction techniques in recommended priority and other considerations.

 Flat-spots reduction techniques

S. No Flat-spots reduction

techniques

Recommendation Additional benefits Disadvantage

1
Set rawcount calibration to

85%.
High Improves sensitivity -

2 Enable dithering High - -

3 Enable PRS clock Low
Improves EMI/EMC
radiation and

susceptibility

Needs to set rawcount

calibration to 65%.

Decreases sensitivity.

4 Increase CMOD Low - Increases noise

5 Increase sense clock divider Low - Increases scan time

Application Note 111 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.4.2 Selecting CAPSENSE™ hardware parameters

CAPSENSE™ hardware parameters govern the conversion gain and CAPSENSE™ signal. Table 14 lists the
CAPSENSE™ hardware parameters that apply to CSD-RM sensing method. The following subsections provide

guidance on how to adjust these parameters to achieve optimal performance for CAPSENSE™ CSD-RM system.

 CAPSENSE™ component hardware parameters

Sections 5.3.4.2.1 and 5.3.4.2.2 show selecting the CAPSENSE™ parameters in Eclipse IDE for ModusToolbox™.

For more details on configuring CAPSENSE™, see the Component datasheet / middleware document.

5.3.4.2.1 Using SmartSense to determine hardware parameters

Table 14 lists the CAPSENSE™ hardware parameters. Tuning these parameters manually for optimal value is a
time-consuming task. You can use SmartSense to determine these hardware parameters and take it as an initial

value for manual tuning. You can fine-tune these values to further optimize the scan time, SNR, power
consumption, or improving EMI/EMC capability of the CAPSENSE™ system. Set the tuning mode to SmartSense
and configure default values for parameters other than finger capacitance, Sense clock source and CDAC
dither. Set these as per the application requirement.

See the SmartSense section for the tuning procedure and use the Tuner GUI to read back all the hardware

parameters set by SmartSense. See the CAPSENSE™ tuner guide for more details on how to use the Tuner GUI.

Figure 87 shows the best hardware parameter values in the Tuner GUI that are tuned by SmartSense for a

specific hardware to sense a minimum finger capacitance of 0.1 pF.

S. No CAPSENSE™ parameter in ModusToolBox™

1 Scan mode

2 Scan connection method

3 Number of Init sub-conversions

4 Sense clock divider

5 Sense clock source

6 Modulator clock divider

7 Reference CDAC value

8 CDAC compensation divider

9 Compensation CDAC value

10 Number of sub-conversions

11 Enable CDAC dither

https://www.cypress.com/ModusToolboxCapSenseTuner

Application Note 112 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Figure 87 Read-back hardware parameter values in tuner GUI

5.3.4.2.2 Manually tuning hardware parameters

Scan mode

Scan mode can be set as CS-DMA or Interrupt Driven mode. For autonomous scanning select DMA mode and for
legacy interrupt based scanning select Interrupt Driven mode.

Sensor connection method

Autonomous scanning is only available in CTRLMUX method, but the numbers of supported pins are limited in
this method (see the Device datasheet for supported pins). Additionally provides better immunity to on-chip

IO noise. Choose AMUXBUS method to support more number of pins in Interrupt Driven mode.

Modulator clock frequency

The modulator clock governs the conversion time for capacitance-to-digital conversion, also called the “sensor
scan time” (see Equation 8).

A lower modulator clock frequency implies the following:

• Longer conversion time (see Equation 55 and Equation 57).

• Lower peak-to-peak noise on raw count because of longer integration time of the ratiometric converter.

• Wider Flat-spots

Select the highest frequency for the shortest conversion time and narrower flat-spots for most cases. Use
slower modulator clock to reduce peak-to-peak noise in raw counts if required.

Application Note 113 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Based on the required Modulator clock frequency (FMOD), calculate the modulator clock divider using Equation
53.

Equation 53. Modulator clock divider

Modulator clock divider =
FClock

FMOD

Where,

FClock = Clock frequency connected to CAPSENSE™ block

Initialization sub-conversions

As part of initialization, CMOD1 and CMOD2 needs to be charged at required voltage (VDDA/2). There are three

phases in initialization – CMOD initialization, CMOD short and initialization sub-conversions. During CMOD

initialization phase CMOD1 is pulled to GND and CMOD2 is pulled to VDDA. During CMOD short phase both capacitors
are tied together so the charge is shared to produce a voltage close to VDDA/2 on both. After the 2 phases the

scanning is started but rawcount is discarded for number of init sub-conversions.

Number of init sub-conversions should be selected based on Equation 54.

Equation 54. Number of init sub-conversions

Number of init subconversions = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (
CMOD ∗ VOS

VDDA ∗ CS ∗ (1 − Base%) ∗ (
1

Bal%
− 1)

) + 1

or

Number of init subconversions = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (
CMOD ∗ VOS

VDDA ∗ SnsClkDiv ∗ Cref ∗ (1 − Bal%)
) + 1

Where,

CMOD = Modulator capacitor

VOS = Comparator offset voltage (3mV)

CS = Sensor capacitance

Base% = Baseline compensation percentage

Bal% = Rawcount calibration percentage

SnsClkDiv = sense clock divider

Cref = Reference capacitance

Cref = RefCDACCode * Clsb

RefCDACCode = Reference CDAC value

Clsb = 8.86fF

Application Note 114 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Sense clock parameters

There are two parameters that are related to Sense clock: Sense clock source and Sense clock divider.

Sense clock source

Select “Auto” to let the Component automatically choose the best Sense clock source from Direct, PRSx, and
SSCx for each widget. If not selecting Auto, select the clock source based on the following:

• Use SSCx (spread spectrum clock) modes for reducing EMI/EMC noise at a particular frequency. This feature

is available in PSoC™ 4S-Series, PSoC™ 4100S Plus, PSoC™ 4100PS, PSoC™ 4100S Max and PSoC™ 6 family of
devices. In this case, the frequency of the sense clock is spread over a predetermined range.

• Use Direct clock for absolute capacitance measurement.

• Use PRSx (pseudo random sequence) modes to remove flat-spots and improve EMI/EMC radiation and
susceptibility. In 5th Generation CAPSENSE™, PRS clock results in a slight reduction in signal/sensitivity at
higher rawcount calibration percent, hence 65% rawcount calibration is recommended when PRS clock is
used.

When selecting SSCx, you need to select the Sense clock frequency, Modulator clock frequency, and number of
sub-conversion such that the conditions mentioned in ModusToolbox™ CAPSENSE™ configurator guide for

SSCx clock source selection are satisfied.

Sense clock divider

The sense clock divider should be selected so that the sensor will charge and discharge completely in each

sense clock period as Figure 46 shows. Note that for Fifth-Generation CSD-RM charging and discharging
happens twice in a single clock period.

This requires that the maximum sense clock frequency be chosen per Equation 55.

Equation 55. Sense clock maximum frequency

FS(maximum) =
1

4 ∗ 5 ∗ RSeriesTotalCP

Equation 56. Total series resistance

RSeriesTotal = REXT + Rinternal

Where,

Cp = Sensor parasitic capacitance

RSeriesTotal = Total series-resistance, including the Rinternal resistance of the internal switches, the recommended

external series resistance of 560  (connected on PCB trace connecting sensor pad to the device pin), and trace

resistance if using highly resistive materials (example ITO or conductive ink).

Rinternal = Internal resistance, this varies based on scan and shield modes, see table Table 15.

 Internal resistance for sensor

Scan mode Rinternal

CTRLMUX 525 Ω

AMUXBUS 425 Ω

https://www.cypress.com/file/455231/download

Application Note 115 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

The value for CP can be estimated using the CSD Built-in-Self-test APIs. See the Component datasheet /
middleware document for details.

To minimize the scan time, as Equation 57 shows, it is recommended to use the maximum sense clock
frequency (FSW) satisfies the criteria as per Equation 55.

Equation 57. Sensor scan time

TSCAN =
NSub

FSW

Where,

NSub = Number of sub-conversions

Based on required sense clock frequency (FSW), the sense clock divider be chosen per Equation 58.

Equation 58. Sense clock divider

Sense clock divider =
FMod

Fsw

Equation 48 shows that it is best to use the maximum clock frequency to have a good gain ; however, you

should ensure that the sensor capacitor fully charges and discharges as shown in Figure 46. And keep in mind
that higher clock frequency increases current consumption as there are more charging and discharging.

Generally, the CP of the shield electrode will be higher compared to sensor CP. For good liquid tolerance, the

shield signal should satisfy the condition mentioned in Tuning shield electrode section . If it is not satisfied,
reduce the sense clock frequency further to satisfy the condition.

Number of sub-conversions

The number of sub-conversions decides the sensitivity of the sensor and sensor scan time. From Equation 19
for a fixed modulator clock and Sense clock, increasing the number of sub-conversions (𝑁𝑆𝑢𝑏) increases the

signal and SNR. However, increasing the number of sub-conversions also increases the scan time of the sensor

per Equation 59.

Equation 59. CSD-RM scan time

Scan time =
NSub

FSW

Initially, set the value to a low number, and use the Tuner GUI to find the SNR of the sensor. If the SNR is not >

5:1 with the selected NSub, try to increase the NSub in steps such that the SNR requirement is met.

Capacitive DACs

Fifth-Generation CAPSENSE™ supports two CDACs: Reference CDAC (Cref) and Compensation CDAC (Ccomp) that

balance CMOD’s as Figure 44 shows. These govern the Conversion gain and CAPSENSE™ signal Conversion gain
and CAPSENSE™ for capacitance-to-digital conversion. The CAPSENSE™ Component allows the following

configurations of the CDACs:

 Enabling or disabling of Compensation CDACs

 Enabling or disabling of Auto-calibration for the CDACs

 Compensation CDAC divider, DAC code selection for Reference and Compensation CDACs if auto-calibration
is disabled

Application Note 116 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Reference CDAC (Cref)

The reference CDAC is used to compensate the charge transfered by the sensor self-capacitance (CS) from CMOD.

The number of times it is switched depends on the self-capacitance of sensor. In case of finger placed over the
sensor, additional reference CDAC switching is required to compensate.

Cref should satisfy below critieria:

• For Compensation Disabled:
RefCDACCode ≥ 25

• For Compensation Enabled:

RefCDACCode ≥
20

CDAC Compensation Divider

Where,

Cref = Reference capacitance = RefCDACCode * Clsb

RefCDACCode = Reference CDAC value

Clsb = 8.86fF

Compensation CDAC (Ccomp)

Enabling the compensation CDAC is called “dual CDAC” mode, and results in increased signal as explained in

Conversion gain and CAPSENSE™ signal. Enable the compensation CDAC for most cases.

The compensation capacitor is used to compensate excess self-capacitance from the sensor to increase the
sensitivity. The number of times it is switched depends on the amount of charge the user application is trying to
compensate (remove) from the sensor self-capacitance.

Compensation CDAC divider

The number of times the compensation capacitor is switched in a single sense clock is denoted by Kcomp. Select

CDAC compensation divider based on Equation 60 such that below criteria is satisfied.

1. CDAC compensation divider >= 4.

2. Kcomp should be a whole number.

Equation 60. CDAC compensation divider

CDAC compensation divider =
Sense clock divider

Kcomp

Auto-calibration

The auto-calibration feature enables the firmware to automatically calibrate the CDAC to achieve the required
calibration target of 85%. It is recommended to enable auto-calibration for most cases. Enabling this feature

will result in the following:

 Fixed raw count calibration to 85% of maximum raw count even with part-to-part CP variation

 Decrease the effect of Flat-spots

If your design environment includes large temperature variation, you may find that the 85% CDAC calibration
level is too high, and that the raw counts saturate easily over large changes in temperature, leading to lower
SNR. In this case, adjust the calibration level lower by using Cy_CapSense_CalibrateAllSlots() in your firmware.

Application Note 117 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

For proper functioning of CAPSENSE™ under diverse environmental conditions, it is recommended to avoid
very low or high CDAC codes. For an 8-bit CDAC, it is recommended to use CDAC codes between 6-200 from the

possible 0 to 255 range. You can use CAPSENSE™ tuner to confirm that the auto-calibrated CDAC values fall in
this recommended range. If the CDAC values are out of the recommended range, based on Equation 47,

Equation 48, and Equation 50, you may change the Calibration level or Fmod or FSW to get the CDAC code in
proper range.

Disable CDAC auto-calibration if a change in CP needs to be detected by measuring the raw count level at reset.
For example:

 Detecting large variations in sensor CP across boards or due to layout problems

 Detecting finger touch at reset

 Advanced CAPSENSE™ methods like liquid-level sensing, for example, to have different raw count level for
different liquid levels at reset

Selecting CDAC codes

This is not the recommended approach. However, this approach could be used only if you want to disable auto-

calibration for any reason. To get the CDAC code, you may first configure CAPSENSE™ Component with auto-
calibration enabled and all other hardware parameters the same as required for final tuning and read back the

calibrated CDAC values using Tuner GUI. Then, re-configure the CAPSENSE™ Component to disable auto-
calibration and use the obtained CDAC codes as fixed DAC codes read-back from the Tuner GUI.

CDAC dither

As the input capacitance is swept, the raw count should increase linearly with capacitance. There are regions

where the raw count does not change linearly with input capacitance these are called flat-spots, see section
Flat-spots for more details. Dithering helps to reduce flat-spots using a dither CDAC. The dither CDAC adds

white noise that moves the conversion point around the flat region.

5.3.4.2.3 Tuning shield electrode

The shield related parameters need to be additionally configured or tuned differently when you enable the
Shield electrode in the CSD-RM sensing method for liquid tolerance or reducing the Cp of the sensor.

Shield electrode tuning theory

Ideally, the shield waveform should be exactly the same as that of the sensor as explained in CAPSENSE™ CSD-

RM shielding. However, in practical applications, the shield waveform may have a higher settling time. Observe
the sensor and shield waveform in the oscilloscope; an example waveform is shown in Figure 88 and Figure 89.

The shield waveform should settle to the sensor voltage within 90% of ON time of the sense clock waveform
and the overshoot error of the shield signal with respect to VREF should be less than 10%.

If these conditions are not satisfied, you will observe a change in raw count of the sensors when touching the

shield hatch; in addition, if inactive sensors are connected to shield as mentioned in Inactive sensor
connection, touching one sensor can cause change in raw count on other sensors, which indicates that there is
cross talk if the shield electrode is not tuned properly.

Approximate maximum shield frequency (FShield) which ensures correct charging and discharging of shield
waveform can be calculated using Equation 61.

Application Note 118 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Equation 61. Sense clock maximum frequency

FShield(maximum) =
1

4 ∗ 5 ∗ RSeriesTotalCsh

Where,

Csh = Shield Cp

RSeriesTotal = Rinternal + REXT

REXT = External series resistor connected to shield electrode. Recommended value is 560 Ω.

Rinternal = Internal resistance, this varies based on scan and shield modes, see table Table 16.

 Internal resistance for shield sensor

In SmartSense, the sense clock frequency is automatically set. Check if these conditions are satisfied. If not

satisfied, switch to Manual tuning and set the sense clock frequency manually so that these conditions are
satisfied.

Signal probed at sensor

Signal Probed at shield electrode

Actual settling time

90% of ON time

Figure 88 Properly tuned shield waveform (active shielding)

Scan Mode Rinternal (Active Shield) Rinternal (Passive Shield)

CTRLMUX 250 Ω 250 Ω

AMUXBUS 300 Ω 100 Ω

Application Note 119 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Signal probed at sensor

Signal Probed at shield electrode

Actual settling time

90% of ON time

Figure 89 Properly tuned shield waveform (passive shielding)

Tuning shield-related parameters

Inactive sensor connection

When the shield electrode is enabled for liquid-tolerant designs, or if you want to use shield to reduce the

sensor parasitic capacitance, this option should be specified as “Shield”; otherwise, select “Ground”.

However, there is a risk of higher radiated emission due to inactive sensors getting connected to Shield. In such

situations, use the CAPSENSE™ API to manually control inactive sensor connections. Instead of connecting all
unused sensors to the shield, connect only the opposing inactive sensors or inactive sensors closer to the

sensor being scanned to shield for reducing the radiated emission.

Number of shield electrodes (total shield count)

This parameter specifies the number of shield electrodes required in the design. Most designs work with one
dedicated shield electrode; however, some designs require multiple dedicated shield electrodes for ease of
PCB layout routing or to minimize the PCB real estate used for the shield layer. See Layout guidelines for

shield electrodeLayout guidelines for shield .

Shield mode

The Fifth-Generation CAPSENSE™ architecture supports two shield modes – active and passive shielding. See

CAPSENSE™ CSD-RM shielding section to decide which mode is best suited for your application.

5.3.4.3 Selecting CAPSENSE™ software parameters

CAPSENSE™ software parameters in Fifth-Generation are the same as that for Fourth-Generation; therefore,
these parameters could be selected as mentioned in Selecting CAPSENSE™ software parameters section.

Application Note 120 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.4.4 Configuring autonomous scan

Autonomous scanning improves CPU offloading by removing the requirement of CPU intervention in between
sensor scans. Figure 90 shows the waveform of scanning all slots, which shows the CAPSENSE™ CPU bandwith

requirement for autonomous scanning and interrupt driven scanning. In autonomous scan once the CPU
initiates a scan all slot command, there is no CPU interrupt is raised by CAPSENSE™ until all the slot scan is
completed. But in interrupt driven scan, after each slot scan, a CPU interrupt is raised to configure the next slot
sensors.

Scanning All Slots

Initiate Scan All
Slots

Process All Slots
CAPSENSE ISR after each slot

scan is completed

Scanning All Slots

Initiate Scan All
Slots

Process All Slots

CPU BW free

CPU BW with CAPSENSE

Autonomous Scanning

Interrupt driven Scanning

Figure 90 CAPSENSE™ configurator settings for scan mode

Application Note 121 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Autonomous scanning is only available when Scan mode is set as Chained Scanning – DMA (CS-DMA) in the
CAPSENSE™ configurator as shown in Figure 91. And sensor connection method is only available as CTRLMUX.

This limits the number of available CAPSENSE™ sensors. In Interrupt driven mode, sensor connection can be
configured as either AMUXBUS or CTRLMUX. Through AMUXBUS any GPIO pin can be configured as a

CAPSENSE™ sensor, but CPU interrupts need to be serviced to configure every next sensor and read the scan
result.

Figure 91 CAPSENSE™ configurator settings for scan mode

5.3.4.4.1 Chained scanning – DMA

In the chained scanning - DMA mode, DMA handles the configuration of each sensor, thereby avoiding the
requirement of CPU intervention after each sensor scan completion. Each channel of MSC block requires four

channels of DMA to be configured in the device configurator as shown in Figure 92.

Application Note 122 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Figure 92 DMA configuration for MSC channels

Figure 93 illustrates the flow of CS-DMA based scanning mode.

1. Write DMA channel

Write DMA is configured to transfer scan configuration of a sensor to MSC block. Source address to the
corresponding sensor’s scan configuration is received from Chain Write DMA channel.

2. Chain Write DMA channel

When the MSC block completes scanning of current sensor, it will trigger the DMA to transfer the source address
of next sensor’s or first sensor’s (if it is a new scan) scan configuration to the Write DMA channel.

3. Read DMA channel

Read DMA channel transfer the scan result (rawcount) to destination location of corresponding sensor.

4. Chain Read DMA channel

Once the current sensor scan is completed by MSC block, Chain Read DMA is triggered to transfer the
destination location (address) of current sensor scan result (rawcount) to the Read DMA channel.

Application Note 123 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Write DMA Channel

Chain Write DMA
Channel

Read DMA Channel

Chain Read DMA
Channel

5th Generation
CAPSENSE Address of SC - 1

Address of RAW - n

Address of RAW - 2

Address of RAW - 1

Data X

Result - n

Result - 2

Result - 1 Result Reg

Memory

Scan Config - 1

Scan Config - 2

Scan Config - n

Data X

Data Y

Data Z

Data X

Data Y

Data Z

Data X

Data Y

Data Z

Address of SC - 2

Address of SC - n

SRC

SRC

SRC

DST

DST

DST

DST

Write Trigger Out

Write Trigger In

DMA
Trigger

DMA
Trigger

Read Trigger Out

Read Trigger In

SRC

Scan Config Reg

Data Y

Data Z

Figure 93 CS-DMA scanning flow

5.3.4.5 Multi-channel scanning

Multi-channel design uses both the instances of CAPSENSE™ MSC0 and MSC1, leading to simultaneous

operation and reduction in scan time. Multi-channel scanning is in lock step thereby avoiding any cross-
channel noise coupling. Scan synchronization is required to have the scanning in lock step. Fifth-Generation

CAPSENSE™ technology has built in ability for multi-channel synchronization and CPU is not required for this.

Multi-channel operation is an added advantage to support applications such as large touchpad, which require

many sensor pins for interfacing. For example, a 6x8 touchpad can be configured as shown in Figure 94. In this
figure, the sensors shown in blue color is scanned by channel 0 (MSC0) and green color is scanned by channel 1
(MSC1).

Application Note 124 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Row 0

C
o

l 0

C
o

l 1

C
o

l 2

C
o

l 3

C
o

l 4

C
o

l 5

C
o

l 6

C
o

l 7

Row 1

Row 2

Row 3

Row 4

Row 5

Scanned by MSC0

Scanned by MSC1

Figure 94 Scanning 6x8 CSD touchpad using multi-channel

In this case, channel 0 and channel 1 can scan one of its sensors at the same time. To avoid any cross-talk noise,
sensors to be scanned together should be selected such that the physical distance between the two sensor is as

maximum as possible, and should avoid combining row and column sensors.

In the above example, the recommended scan configuration is as shown in Table 17. All the sensors that
belong to same slot is scanned together.

 Channel scan configuration

5.3.4.6 Button widget tuning

Button widget tuning section provides high-level steps for tuning CSD button. The CE231078 PSoC™ 4: MSC

CAPSENSE™ CSD Button Tuning explains tuning of self capacitance-based button widgets in the Eclipse IDE
for ModusToolbox™. For details on the Component and all related parameters, see the Component datasheet.

Slot # Channel 0 sensor Channel 1 sensor

Slot 0 Col 0 Col 4s

Slot 1 Col 1 Col 5

Slot 2 Col 2 Col 6

Slot 3 Col 3 Col 7

Slot 4 Row 0 Row 3

Slot 5 Row 1 Row 4

Slot 6 Row 2 Row 5

https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csd-button-tuning
https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csd-button-tuning
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd

Application Note 125 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.4.7 Slider widget tuning

Slider widget tuning section provides high-level steps for tuning CSD slider. The CE232776 PSoC™ 4: MSC
CAPSENSE™ CSD slider tuning explains tuning of self-capacitance-based slider widgets in the Eclipse IDE for

ModusToolbox™. For details on the Component and all related parameters, see the Component datasheet.

5.3.4.8 Touchpad widget tuning

Touchpad widget tuning section provides high-level steps for tuning CSD-RM touchpad. The CE232273 PSoC™
4: MSC Self-capacitance touchpad tuning explains tuning of self-capacitance-based touchpad widgets in the

Eclipse IDE for ModusToolbox™. For details on the Component and all related parameters, see the Component

datasheet.

Following are the basic rules for Scan Order tab for using CSD-RM Touchpad Widget on multi-channels:

1. Scanning in Fifth-Generation CAPSENSE™ is ordered using slot numbers. A single slot number can be

assigned to one sensor in all the channels and scanning that particular slot, scans all the sensors in that slot
in sync.

2. For CSD-RM Touchpad same slot should only be assigned to the row or to the column. Thus, avoiding

scanning of a row and column element together which will cause cross-talk.

3. Slot numbers should be assigned in such a way that there is a maximum distance between the sensors
which is having same slot number.

4. Should not mix CSD and CSX sensors in a single slot.

5. Touchpad sensors should be equally divided between channels for optimizing scan duration.

6. All channels must have equal number of sensors (scans) for "consensus" method to work. If number of
sensor in each channel is not equal, "empty slots" are added to respective channels.

7. With in a slot all sensors should have the same sense clock and same number of sub-conversions

Figure 95 shows an example of slot configuration for an 8x6 CSD-RM touchpad.

Figure 95 Slot configuration for an 8x6 CSD-RM touchpad

5.3.4.9 Proximity widget example

For tuning a proximity sensor, see AN92239 - Proximity sensing with CAPSENSE™.

https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csd-slider-tuning
https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csd-slider-tuning
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csd-touchpad-tuning
https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csd-touchpad-tuning
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
http://www.cypress.com/documentation/application-notes/an92239-proximity-sensing-capsense

Application Note 126 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.5 CSX-RM sensing method (Fifth-generation)

This section explains the basics of manual tuning using CSX-RM sensing method for the Fifth-Generation
devices. It also explains the hardware parameters that influence the manual tuning procedure.

5.3.5.1 Basics

5.3.5.1.1 Conversion gain and CAPSENSE™ signal

Conversion gain will influence how much signal count the system observes for a finger touch on the sensor. If
there is more gain, the signal is higher, and a higher signal means a higher achievable Signal-to-noise ratio

(SNR). Note that an increased gain may result in an increase in both signal and noise. However, if required, you
can use firmware filters to decrease noise. For details on available firmware filters, see Table 7.

Conversion gain in single CDAC

In a mutual-capacitance sensing system, the rawcount counter is directly proportional to the mutual-
capacitance between the Tx and Rx electrodes, as Equation 62 shows.

Equation 62. Raw count relationship to sensor capacitance

RawcountCounter = GCSX CM

Where,

GCSX = Capacitance to digital conversion gain of CAPSENSE™ CSX

CM = Mutual-capacitance between the Tx and Rx electrodes

Figure 97 shows the relationship between raw count and mutual-capacitance of the CSX sensor. The tunable

parameters of the conversion gain in Equation 63 are Cref, TxClkDiv and NSub.

The approximate value of this conversion gain is:

Equation 63. Capacitance to digital converter gain

GCSX = MaxCount.
2

CrefTxClkDiv

Where, MaxCount = NSub * TxClkDiv

The equation for raw count in the single CDAC mode, according to Equation 62 and Equation 63 is shown in
Equation 64.

Equation 64. Single CDAC mode raw counts

RawcountCounter = NSub

2 ∗ CM

Cref

Where,

NSub = Number of sub-conversions

TxClkDiv = Tx clock divider

CM = Sensor mutual-capacitance

Cref = RefCDACCode ∗ Clsb

Application Note 127 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

RefCDACCode = Reference CDAC value

Clsb = 8.86 fF

The tunable parameters of the conversion gain are Cref, TxClkDiv, and NSub.

V

t

VOFF

0

T = 1/FTX

VON

Figure 96 Voltage at Tx node of the CSX sensor

Note that the raw count observed from the Component is given by Equation 65. See CAPSENSE™ CSX-RM

sensing method (fifth-generation) for more details on Rawcountcomponent.

Equation 65. Rawcountcomponent

RawcountComponent = MaxCount − RawcountCounter

Figure 97 Raw count vs sensor mutual-capacitance

Application Note 128 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Conversion gain in dual CDAC mode

The equation for raw count in the dual CDAC mode, according to Equation 23 and Equation 62 is shown in
Equation 66.

Equation 66. Dual CDAC mode raw counts

raw count = GCSX CM − Maxcount
2 ∗ Ccomp

CrefCompCLKdiv

Where,

Maxcount = NSub * SnsClkDiv

SnsClkDiv = Sense clock divider

NSub = Number of sub-conversions

Cref = Reference capacitance = RefCDACCode*Clsb

Ccomp = Compensation capacitance = CompCDACCode*Clsb

CompCLKDiv = CDAC compensation divider

CM = Sensor mutual-capacitance

RefCDACCode = Reference CDAC value

CompCDACCode = Compensation CDAC value

Clsb = 8.86fF

GCSX is given by Equation 63.

5.3.5.2 Selecting CAPSENSE™ hardware parameters

CAPSENSE™ hardware parameters govern the conversion gain and CAPSENSE™ signal. Table 18 lists the

CAPSENSE™ hardware parameters that apply to the CSX-RM sensing method for the Fifth-Generation devices.

 CAPSENSE™ component hardware parameters

S. No CAPSENSE™ parameter in ModusToolBox™

1 Tx clock divider

2 Tx clock source

3 Modulator clock divider

4 Reference CDAC value

5 CDAC compensation divider

6 Compensation CDAC value

7 Number of sub-conversions

8 Enable CDAC dither

Application Note 129 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.5.2.1 Scan mode

Scan mode can be set as CS-DMA or Interrupt Driven mode. For autonomous scanning select DMA mode and for
legacy interrupt based scanning select Interrupt Driven mode.

5.3.5.2.2 Sensor connection method

Autonomous scanning is only available in CTRLMUX method, but the numbers of supported pins are limited in
this method (see the Device datasheet for supported pins). Additionally provides better immunity to on-chip
IO noise. Choose AMUXBUS method to support more number of pins in Interrupt Driven mode.

In CTRLMUX connection method for CSX sensors, choose Inactive sensor connection as VDDA/2 and ensure to
add empty scan slots before the first sensor scan for initializing the voltages on Rx lines to VDDA/2. See

Touchpad widget tuning code examples for detailed steps on creating empty slots.

5.3.5.2.3 Modulator clock frequency

It is best to choose the highest allowed clock frequency for the given device because a higher modulator clock
frequency leads to a higher sensitivity/signal, increased accuracy, and lower noise for a given CM to digital count

conversion as Equation 62 and Equation 63 indicates. Also, a higher value of FMOD/FTX ensures lower width of
Flat-spots in CM to raw count conversion.

5.3.5.2.4 Initialization sub-conversions

As part of initialization, CMOD’s needs to be charged at required voltage (VDDA/2). There are three phases in
initialization – CMOD initialization, CMOD short and initialization sub-conversions. During CMOD initialization phase

CMOD1 is pulled to GND and CMOD2 is pulled to VDDA. During CMOD short phase both capacitors are tied together so

the charge is shared to produce a voltage close to VDDA/2 on both. After the 2 phases the scanning is started
but rawcount is discarded for number of init sub-conversions.

Number of init sub-conversions should be selected based on Equation 67.

Equation 67. Number of init sub-conversions

Number of init subconversions = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (
CMOD ∗ VOS

2 ∗ VDDA ∗ CM ∗ (1 − Base%) ∗ (
1

Bal%
− 1)

) + 1

or

Number of init subconversions = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (
CMOD ∗ VOS

VDDA ∗ TxClkDiv ∗ Cref ∗ (1 − Bal%)
) + 1

Where,

CMOD = Modulator capacitor

VOS = Comparator offset voltage (3mV of PSoC 4100S Max device)

CM = Sensor mutual-capacitance

Base% = Baseline compensation percentage

Bal% = Rawcount calibration percentage

TxClkDiv = Tx clock divider

Application Note 130 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Cref = Reference capacitance = RefCDACCode * Clsb

RefCDACCode = Reference CDAC value

Clsb = 8.86fF

5.3.5.2.5 Tx clock parameters

There are two parameters that arhe related to the Tx clock: Sense clock source and Sense clock frequency.

Tx clock source

Select “Auto” as the clock source for the Component to automatically select the best Tx clock source between

Direct and Spread Spectrum Clock (SSCx) for each widget. If “Auto” option is not selected, then choose the

clock source based on the following:

• Direct – Clock signal with a fixed clock frequency. Use this option for most cases.

• Spread spectrum clock (SSCx) – If you choose this option, the Tx clock signal frequency is dynamically

spread over a predetermined range. Use this option for reduced EMI interference and avoiding Flat-spots.

However, when selecting SSCx clock, ensure to select the Tx clock frequency, modulator clock frequency,

and number of sub-conversion such that the conditions mentioned in Component datasheet /
ModusToolbox™ CAPSENSE™ configurator guide for SSCx clock source selection are satisfied.

• Pseudo Random Sequence (PRSx) – Use PRSx (pseudo random sequence) modes to remove flat-spots and

improve EMI/EMC radiation and susceptibility. In 5th Generation CAPSENSE™, PRS clock introduces
signal/sensitivity loss at higher rawcount calibration percent, hence 65% rawcount calibration is

recommended when PRS clock is used.

Tx clock frequency

The Tx clock frequency determines the duration of each sub-conversion as explained in the CAPSENSE™ CSX-
RM sensing method (fifth-generation) section. The Tx clock signal must completely charge and discharge the
sensor parasitic capacitance; and can be verified by checking the signal in an oscilloscope or it can be set using

Equation 62. In addition, ensure that the auto-calibrated CDAC code lies in the mid-range (for example, 6-200)

for the selected FTX. If the auto-calibrated CDAC code lies out of the recommended range, tune FTX such that it

falls in the recommended range and satisfies Equation 68.

Equation 68. Condition for selecting Tx clock frequency

FTX <
1

2 ∗ 5 ∗ RSeriesTxCPTx

Where,

CpTx = Tx electrode parasitic capacitance

RSeriesTx = Total series-resistance, including the Rinternal resistance of the internal switches, the recommended

external series resistance of 2K (connected on PCB trace connecting sensor pad to the device pin), and trace
resistance if using highly resistive materials (example ITO or conductive ink).

Rinternal = Internal resistance, this varies based on scan modes, see Table 19.

http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
https://www.cypress.com/file/455231/download

Application Note 131 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

 Internal resistance for sensor

The value for CP can be estimated using the CSD Built-in-Self-test APIs. See the Component datasheet /
middleware document for details.

To minimize the scan time, as Equation 69 shows, it is recommended to use the maximum Tx clock frequency
available in the component drop-down list that satisfies Equation 68.

Equation 69. Scan time of CSX sensor

TCSX =
NSub

FTX

Where,

NSub = Number of sub-conversions

Additionally, if you are using the SSCx clock source, ensure that you select the Tx clock frequency that meets

the conditions mentioned in Component datasheet / middleware document / ModusToolbox™ CAPSENSE™

configurator guide in addition to these conditions.

5.3.5.2.6 Number of sub-conversions

The number of sub-conversions decides the sensitivity of the sensor and sensor scan time. From Equation 23

for a fixed modulator clock and Tx clock, increasing the number of sub-conversions (NSub) increases the signal

and SNR. However, increasing the number of sub-conversions also increases the scan time of the sensor per

Equation 69.

Initially, set the value to a low number (for example, 20), and use the Tuner GUI to find the SNR of the sensor. If
the SNR is not > 5:1 with the selected NSub, increase then NSub in steps such that the SNR requirement is met.

5.3.5.2.7 Capacitive DACs

CSX-RM in Fifth-Generation supports two CDACs: Reference CDAC (Cref) and Compensation CDAC (Ccomp) that
balance CMOD’s as Figure 49 shows. These govern the Conversion gain and CAPSENSE™ signal for capacitance-

to-digital conversion. The CAPSENSE™ Component allows the following configurations of the CDACs:

 Enabling or disabling of Compensation CDACs

 Enabling or disabling of Auto-calibration for the CDACs

 Compensation CDAC divider, DAC code selection for Reference and Compensation CDACs if auto-calibration

is disabled

Reference CDAC (Cref)

The reference CDAC is used to compensate the charge transfered by the sensor mutual-capacitance (CM) from

CMOD. The number of times it is switched depends on the mutual-capacitance of sensor.
Cref should satisfy below critieria:

• For Compensation Disabled:
RefCDACCode ≥ 6

• For Compensation Enabled:

Scan mode Rinternal

CTRLMUX 950 Ω

AMUXBUS 500 Ω

https://www.cypress.com/file/455231/download
https://www.cypress.com/file/455231/download

Application Note 132 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

RefCDACCode ≥
10

CDAC Compensation Divider

Where,

Cref = Reference capacitance = RefCDACCode * Clsb

RefCDACCode = Reference CDAC value

Clsb = 8.86fF

Compensation CDAC (Ccomp)

Enabling the compensation CDAC is called “dual CDAC” mode, and results in increased signal as explained in

Conversion gain and CAPSENSE™ signal. Enable the compensation CDAC for most cases.

The compensation capacitor is used to compensate excess mutual-capacitance from the sensor to increase the
sensitivity. The number of times it is switched depends on the amount of charge the user application is trying to

compensate from the sensor mutual-capacitance.

Ccomp should satisfy below critieria:

• If RefCDACCode = 1, then CompCDACCode ≥ 98
Where,

Ccomp = Compensation capacitance = CompCDACCode * Clsb

CompCDACCode = Compensation CDAC value

Clsb = 8.86fF

5.3.5.2.8 Compensation CDAC divider

The number of times the compensation capacitor is switched in a single sense clock is denoted by Kcomp. Select
CDAC compensation divider based on below Equation 70 such that below criteria is satisfied:

8. CDAC compensation divider >= 4.

9. Kcomp should be a whole number.

Equation 70. CDAC compensation divider

CDAC compensation divider =
Tx clock divider

Kcomp

5.3.5.2.9 Auto-calibration

This feature enables the firmware to automatically calibrate the CDAC to achieve the required calibration target
of 40%. It is recommended to enable auto-calibration for most cases. Enabling this feature will result in the

following:

 Fixed raw count calibration to 40% of max raw count even with part-to-part CM variation

 Decrease the effect of Flat-spots

 Automatically selects the optimum gain

Application Note 133 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

For proper functioning of CAPSENSE™ under diverse environmental conditions, it is recommended to avoid
very low or high CDAC codes. You can use CAPSENSE™ tuner to confirm that the auto-calibrated CDAC values

fall in this recommended range. If the CDAC values are out of the recommended range, based on Equation 62,
Equation 63, and Equation 65, you may change the Calibration level or Fmod or FSW to get the CDAC code in

proper range.

5.3.5.2.10 Selecting CDAC codes

This is not the recommended approach. However, this could be used only if you want to disable auto-

calibration for any reason. To get the CDAC code, you may first configure CAPSENSE™ Component with auto-

calibration enabled and all other hardware parameters the same as required for final tuning and read back the
calibrated CDAC values using Tuner GUI. Then, re-configure the CAPSENSE™ Component to disable auto-
calibration and use the obtained CDAC codes as fixed DAC codes read-back from the Tuner GUI.

5.3.5.2.11 CDAC dither

As the input capacitance is swept the raw count should increase linearly with capacitance. There are regions
where the raw count does not change linearly with input capacitance these are called flat-spots, see section

Flat-spots for more details. Dithering helps to reduce flat-spots using a dither CDAC. The dither CDAC adds
white noise that moves the conversion point around the flat region.

5.3.5.3 Selecting CAPSENSE™ software parameters

CAPSENSE™ software parameters in Fifth-Generation are the same as that for Fourth-Generation; therefore,
these parameters could be selected as mentioned in the Selecting CAPSENSE™ software parameters section.

5.3.5.4 Configuring autonomous scan

Configuring autonomous scan in CSX-RM sensing is the same as that for CSD-RM sensing; therefore, configurate
autonomous scan as mentioned in the Configuring autonomous scan section.

5.3.5.5 Multi-channel scanning

Multi-channel scanning in CSX-RM sensing is the same as that for CSD-RM sensing; therefore, refer Multi-
channel scanning section 5.3.4.5 for more details.

5.3.5.6 Button widget tuning

Button widget tuning section provides high-level steps for tuning CSX button. The CE231079 PSoC™ 4: MSC

CAPSENSE™ CSX button tuning explains tuning of mutual-capacitance based button widgets in the Eclipse IDE

for ModusToolbox™. For details on the Component and all related parameters, see the Component datasheet.

5.3.5.7 Touchpad widget tuning

Touchpad widget tuning section provides high-level steps for tuning the CSX Touchpad. The CE232275
PSoC™ 4: MSC multi-touch mutual-CAPSENSE™ touchpad tuning explains tuning of mutual-capacitance
based button widgets in the Eclipse IDE for ModusToolbox™. For details on the Component and all related
parameters, see the Component datasheet.

https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csx-button-tuning
https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csx-button-tuning
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csx-touchpad-tuning
https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csx-touchpad-tuning
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd

Application Note 134 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Rules for Scan Order tab for CSX widget when multi-channels are enabled:

1. Scanning in Fifth-Generation CAPSENSE™ is ordered using slot numbers. A single slot number can be
assigned to one sensor in all the channels and scanning that particular slot, scans all the sensors in that slot
in sync.

5. Slot numbers should be assigned in such a way that there is a maximum distance between the Rx electrode
which is having same slot number, thus avoiding any potential cross-talk.

6. Tx and Rx electrode of a sensor can be assigned to two different channels or same channel. The sensor
belongs to the channel which sensor Rx electrode is connected.

7. Rx electrodes should be equally divided between channels for optimizing scan duration.

8. Any of the channel can generate Tx signal for all channels.

9. Tx electrodes can be assigned in any order between channels.

10. All channels must have equal number of sensors (scans) for “consensus” method to work. If number of

scans in each channel is not equal, "empty slots" are added to respective channels.

11. Should not mix CSD and CSX sensors in a single slot.

2. With in a slot all sensors should have the same sense clock and same number of sub-conversions

Figure 98 shows an example of slot configuration for an 86 CSX-RM touchpad.

Figure 98 Slot configuration for 86 CSX-RM touchpad

Application Note 135 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.6 Manual tuning trade-offs

When manually tuning a design, it is important to understand how the settings impact the characteristics of the
capacitive sensing system. Any CAPSENSE™ design has three major performance characteristics: reliability,

power consumption, and response time.

• Reliability defines how CAPSENSE™ systems behave in adverse conditions such as a noisy environment or

in the presence of water. High-reliability designs will avoid triggering false touches, and ensure that all
intended touches are registered in these adverse conditions.

Power consumption is defined as the average power drawn by the device, which includes, scanning,
processing, and low-power mode transitions as explained in Low-power design. Quicker scanning and

processing of the sensors ensures that the device spends less time in a higher power state and maximizes the

time it can spend in a lower power sleep state.

• Response time defines how much time it takes from the moment a finger touches the sensor until there is a

response from the system. Because the lowest response time is limited by the scan and processing time of
the sensors, it is important to properly define and follow a timing budget. A good target for total response

time is below 100 ms.

These performance characteristics depend on each other. The purpose of the tuning process is to find an

optimal ratio that satisfies the project’s specific requirements. When planning a design, it is important to note
that these characteristics usually have an inverse relationship. If you take action to improve one characteristic,
the others will degrade.

For example, if you want to use CAPSENSE™ in a toy, it is more important to have a quick response time and low

power consumption. In a different example, such as a “Start/Stop” button for an oven, reliability is the most

important characteristic and the response time and power consumption are secondary.

Now let us consider the factors that affect reliability, power consumption, and response time. Figure 99 shows

dependencies between CAPSENSE™ characteristics, measurable parameters, and actual CAPSENSE™

configurable parameters.

Reliability Power Consumption Response Time

SNR

Scan Time

Scan Rate

Scan Resolution

Modulator
Clock Frequency

Sense
Clock Frequency

Firmware Filters

Debounce

Compensation
IDAC

Shield

Sense Clock Source

FW Thresholds

Noise Immunity

CapSense Characteristics

Measurable Parameters

Configurable Parameters

Firmware
Processing Time

Modulator IDAC

Figure 99 CAPSENSE™ parameter relationships

Application Note 136 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.6.1 Reliability

The following factors affect reliability:

1. Signal-to-noise ratio (SNR):

SNR gives a measure of confidence in a valid touch signal. For reliable CAPSENSE™ operation, it should be

greater than 5. Manual tuning can ensure optimal SNR in specific designs.

2. Noise immunity:

It is the ability of the system to resist external or internal noise. Typical examples of external noise are ESD
events, RF transmitters such as Bluetooth® LE, switching relays, power supply, and so on. The internal noise
source could be an LED driven by PWM, or I2C, or SPI communications for example. Even designs with good

SNR may suffer from poor performance because of poor noise immunity. Manual tuning allows to tune
frequencies and parameters to help avoid noise interference by allowing more control over selection of
different parameters.

5.3.6.2 Power consumption and response time

The following factors affect the power consumption and response time:

1. Scan rate

Scan rate can be defined as the frequency at which you scan the sensor. Scan rate decides the minimal
possible time from the finger touch until it is reported. The maximum scan rate will be limited by the
Sensor scan .

2. Scan time

It is the time taken to scan and process a particular sensor. It affects power consumption as indicated in
Low-power design and scan rate as indicated above. Manual tuning can achieve specific scan durations

while maintaining a minimum SNR.

3. Firmware touch delay

This can be caused by the Debounce procedure or use of Raw Data Noise Filters depending on the
CAPSENSE™ component version you are using). Both affect scan time by adding to the processing time of a

sensor and delay the touch reporting until a certain number of samples in a row show the touch signal.

In both cases response rate is reduced, but reliability is usually improved.

Application Note 137 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.7 Tuning debug FAQs

This section lists the general debugging questions on CAPSENSE™ Component tuning. Jump to the question
you have, for quick information on possible causes and solutions for your debugging topic.

5.3.7.1 The tuner does not communicate with the device

Cause 1: Your device is not programmed.

Solution 1: Make sure to program your device with your latest project updates before launching the tuner.

Cause 2: The tuner configuration setting does not match the SCB Component setting.

Solution 2: Open the EzI2C slave component configuration window, that is, the Configure ‘SCB_P4’ dialog and

verify that the settings match the configuration of the Tuner Communication Setup dialog. See the CAPSENSE™
Component datasheet for details on tuner usage.

Cause 3: Your I2C pins are not configured correctly.

Solution 3: Open the .cydwr file in Workspace Explorer and ensure the pin assignment matches what is
physically connected on the board.

Cause 4: You did not include the CAPSENSE™ TunerStart API or another required tuner code.

Solution 4: Add the tuner code listed in CAPSENSE™ Component datasheet to your main.c and reprogram the
device.

5.3.7.2 I am unable to update parameters on my device through the tuner

Cause 1: Your communications settings on the device are incorrect.

Solution 1: Review and make sure the settings in the UART/EZI2C configurator dialog and Tuner

Communication Setup dialog match. Make sure that the sub-address size is equal.

5.3.7.3 I can connect to the device but I do not see any raw counts

Cause 1: You did not add the tuner code to your project.

Solution 1: Review the Tuner GUI section and add the tuner code to your main.c and reprogram the device.

5.3.7.4 Difference counts only change slightly (10 to 20 counts) when a finger is

placed on the sensor

Cause 1: The gain of your system is too low.

Solution 1: Review the Tuner GUI section of this document.

Cause 2: Your sensor parasitic capacitance is very high.

Solution 2: To confirm this issue, use the Built-in Self-Test (BIST) APIs documented in the Component
datasheet. These functions allow you to read out an estimate of the sensor parasitic capacitance. You can also
confirm this reading independently with an LCR meter.

http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd

Application Note 138 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

If your hardware has an option to enable Driven-shield signal and shield electrode, use this option in the
advanced settings of the CAPSENSE™ Component configuration window. A driven shield around the sensors

helps reduces the parasitic capacitance. When you enable this option, you may want to enable driving the
shield to unused sensors by also changing the “Inactive Sensor connection” setting to “shield” in the advanced

settings. If after enabling the shield, your CP remains greater than the supported range of parasitic capacitance
by the PSoC™ device, review your board layout to reduce CP further, by following the PCB layout guidelines,

and/or contact Technical support to review your layout. See Component datasheet / middleware document
for more details on the supported range of CP.

Cause 3: Your overlay may be too thick.

Solution 3: Review your Overlay Overlay thickness with respect to your Overlay thickness.

Cause 4: Raw counts may be too close to saturation and hence, saturating when sensor is touched.

Solution 4: Tune IDAC to ensure that raw counts are tuned to ~85 percent of the max raw count for a given

sensor according to the Modulation and compensation IDACs section.

5.3.7.5 After tuning the system, I see large amount of radiated noise during

testing

Cause 1: The sense clock frequency is causing radiated noise in your system.

Solution 1: Reduce the sense clock frequency or enable PRS for your sensor based on Electromagnetic

compatibility (EMC) considerations section. If it is already enabled, see the Electromagnetic compatibility

(EMC) considerations section.

Cause 2: Large shield electrode may be contributing to a large radiated noise.

Solution 2: Reduce the size of shield electrode based on Layout guidelines for liquid tolerance.

5.3.7.6 My scan time no longer meets system requirements after manual tuning

Cause: The noise and CP of your system are high, which requires more scan time and filtering to achieve reliable
operation.

Solution: CP needs to be reduced. First, enable the Driven-shield signal and shield electrode in the advanced

settings of the CAPSENSE™ Component configuration window and ensure gain is set as high as possible by

reviewing the PCB layout guidelines. If your system still cannot meet final requirements, you may need to
change your board layout to reduce CP further, review the PCB layout guidelines for the same.

5.3.7.7 I am unable to calibrate my system to 85 percent

Cause 1: Your sensor may have a short to ground.

Solution: First, use a multimeter to check if there is a short between your sensor and ground. If it is present,

review your schematic and layout for errors.

Cause 2: Your sensor CP may be too high or too low.

Solution: If your hardware has an option to enable Driven-shield signal and shield electrode, use this option
in the advanced settings of the CAPSENSE™ Component configuration window. A driven shield around the

sensors helps reduces the parasitic capacitance. If you do not have a hardware option to use shield or if after
enabling the shield, your CP remains greater than the device supported CP, contact Technical support to
review your layout or for further application-specific guidance.

Application Note 139 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

If you suspect the capacitance to be low compared to the minimum supported parasitic capacitance by the
device, add a footprint of the capacitor to a pin. In the final design, if the CP is identified to be lower than the

supported range, place an additional compensation capacitor to increase the sensor CP to the supported range
by dynamically connecting it to the sensor while scanning. See the Component datasheet / middleware

document to understand how to gang the sensors to an external compensation capacitor connected to a pin to
increase the CP whenever required.

Figure 100 Gang the sensors to the external compensation capacitor

5.3.7.8 My slider centroid response is non-linear

Cause: Layout may not meet hardware design guidelines to ensure proper linearity.

Solution: Check the CP of the sensors using the built-in self-test option in the General tab of the CAPSENSE™

configuration window and update the layout according to the Slider design section. See the Component
datasheet / middleware document section for details on BIST API.

5.3.7.9 My slider segments have a large variation of CP

Cause: Your layout design caused your sensors to have an unbalanced CP.

Solution: Your layout needs to be updated. Review Slider design and update your layout as required. If this is

not immediately possible, you should re-tune every sensor to have a similar response. This will be a long

iterative process and the preferred method is to update the hardware, if possible.

Application Note 140 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.7.10 Raw counts show a level-shift or increased noise when GPIOs are

toggled

Cause 1: The sensor traces are routed parallel to the toggling GPIOs on your PCB.

Solution: Your layout needs to be updated. Review Trace routing and update your layout as required. If the
layout cannot be modified at the current stage, you could evaluate the use of firmware filters to reduce the
peak-to-peak noise and hence improve SNR.

Cause 2: A large amount of current is being sinked through the GPIOs.

Solution: Limit the amount of DC current sink through the GPIOs when CAPSENSE™ sensors are being scanned.
See Schematic rule checklist. If the current sink through GPIOs is firmware-controlled, and the raw count-

level-shift caused by current sink has a large difference compared to the touch signal, you could implement

firmware techniques like resetting or re-initializing the CAPSENSE™ baseline whenever the current sink is

enabled through the GPIOs. The baseline of the CAPSENSE™ sensor could be reset by using the
CapSense_InitializeWidgetBaseline() API function as shown below:

CapSense_InitializeWidgetBaseline(CapSense_CSD_BUTTON_WDGT_ID);

Figure 101 Resetting baseline using firmware technique

GPIOs sinking current

No GPIO Toggling

GPIOs not
Sinking

Current

Baseline
Reset

Baseline

Reset

GPIOs not
Sinking

Current

Application Note 141 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Cause 3: You did not follow the guidelines mentioned in Sensor pin selection section.

Solution: Follow the recommendations in Sensor pin selection section. In addition, for PSoC™ 6 family of
devices, follow these guidelines on drive mode strength, switching frequency and slew rate selection, and so
on:

• Reduce the drive strength of the switching GPIOs. Table 20 lists the available drive strength options for the
GPIOs. Figure 102 shows an example on how to select the drive strength of the GPIOs using the Device
configurator in the ModusToolbox™ project.

 Drive strength for GPIOs

Drive strength Drive current in mA

Full 8

1

2
 4

1

4
 2

1

8
 1

• Decrease the switching frequency of the GPIO being toggled.

• Use GPIO slew rate as SLOW mode (note that this limits the toggling frequency to 1.5 MHz). See Table 38 for
more details.

• Use PRS as the Sense clock source.

• If possible, reduce VDDA to lower than 2.7 V.

• Try to restrict GPIO switching to intervals between CAPSENSE™ scans.

Figure 102 Selecting drive strength for GPIOs

https://www.cypress.com/file/492971/download
https://www.cypress.com/file/492971/download

Application Note 142 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

5.3.7.11 I am getting a low SNR

Cause 1: Sensor is not tuned properly.

Solution: Follow the tuning guidelines in CAPSENSE™ performance tuning.

Cause 2: CAPSENSE™ and other peripherals are not properly assigned to the recommended pin.

Solution: See Sensor pin selection and Raw counts show a level-shift or increased noise when GPIOs are
toggled for more details.

Cause 3: HFCLK source may be causing higher noise for a PSoC™ 6 device.

Solution: For the best performance of CAPSENSE™ in PSoC™ 6 family of devices, use HFCLK derived from the
IMO/ECO+PLL clock source. This clock source provides the best SNR performance. Figure 103 shows how to

change the clock settings using the System tab in the Device configurator for a ModusToolbox™ project. See
AN221774 - Getting started with PSoC™ 6 MCU for more details on changing the device clock.

Figure 103 Changing clock settings in device configurator

5.3.7.12 I am observing a low CM for my CSX button

Cause: The mutual capacitance between the Tx and Rx electrode should be higher than approximately 750fF

for proper IDAC calibration.

Solution: It is recommended to have two free pins in your device with footprint to add extra Capacitance if CM

of the button turn out to be low. We could then increase the sensor CM to the supported range by dynamically

connecting external capacitor to the CSX sensor while scanning as shown in the below figure, where Pin1 is
ganged to the Tx pin and Pin2 is ganged to the Rx pin of the sensor respectively. This will help in mitigating low
CM risk if it is found during testing phase. See Component datasheet / middleware document to understand
how to gang the sensor.

https://www.cypress.com/file/492971/download
https://www.cypress.com/documentation/application-notes/an221774-getting-started-psoc-6-mcu

Application Note 143 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Figure 104 shows the addition of the external capacitor as a button widget in the CAPSENSE™ component and
assigning dedicated pins to the Tx and Rx electrode. Figure 105 shows the ganging of the sensor to the external

capacitor by assigning Selected pins to both sensor pin and external capacitor pin, this must be done for both
Rx and Tx electrode. There is no need to scan the external capacitor while scanning of the widgets, thus we can

selectively scan widgets using the APIs CapSense_SetupWidget() and CapSense_Scan() provided by the
CAPSENSE™ component.

Figure 104 Ganging external capacitor to increase the CM of the sensor

Figure 105 Assigning dedicated pins to the external capacitors

Application Note 144 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ performance tuning

Figure 106 Gaining the external capacitor and sensor pin

Application Note 145 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Gesture in CAPSENSE™

6 Gesture in CAPSENSE™

6.1 Touch gesture support

The CAPSENSE™ Component in PSoC™ 4 and PSoC™ 6 MCU supports the gesture detection feature for sliders

and touchpad widgets. It allows to identify different predefined gestures based on touch patterns on sliders
and touchpad widget.

Note that the gesture detection feature is available for selected device part numbers. If you intend to use the
gesture feature of the component, ensure that you select the device that supports this feature.

6.2 Gesture groups

Gestures are divided into several groups: Click, one-finger scroll, two-finger scroll, two-finger zoom, one-finger
edge swipe, one-finger flick, and one-finger rotate.

Table 21 lists the gestures supported by various widgets. See Component datasheet / middleware document
for more details on how these gestures are defined and the parameter that to be configured in the CAPSENSE™
configurator to detect these gestures.

 Gesture supported by different CAPSENSE™ widgets

Widget type

Gesture groups

Click
One-finger

scroll

Two-finger

scroll

One-finger

flick

One-finger

edge swipe

Two-finger

zoom

One-finger

rotate

Button ✓ − − − − − −

Linear slider − ✓ − ✓ − − −

Radial slider ✓ − − − − − −

Matrix buttons − − − − − −

Touchpad ✓ − − ✓ − − ✓

Proximity − − − − − −

Application Note 146 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Gesture in CAPSENSE™

6.3 One-finger gesture implementation

Implementing gesture detection involves following steps:

1. Tuning the widget

2. Selecting predefined gesture

3. Firmware implementation with timestamp

4. Tuning gesture parameters

6.3.1 Tuning the widget

Tune the CAPSENSE™ hardware and software parameters for the widget. Generally, in a gesture application,

because of the speed and orientation of the finger movement changes, the finger may make a very little contact

with the widget. This could be confirmed by viewing the centroid data in the Tuner GUI when the gesture is
being performed. If the sensitivity is good enough, you will get the data without any break. If you observe any
break in the centroid data, increase the sensitivity until the data for the gesture is complete and appear without
any break.

Ensure that you get a SNR above 5:1 for the slight finger contact that you may want to detect. Also, ensure that
you have a linear centroid response w.r.t the finger position on the slider or touchpad. Tune the sensors using

guidelines in section Slider widget tuning or Touchpad widget tuning for achieving the same

6.3.2 Selecting predefined gesture

First, enable Gestures in the Gesture tab in CAPSENSE™ Component. All gesture-related configuration

parameters appear after enabling gestures; these parameters are systematically arranged by widgets / gesture

groups as Table 21 shows. According to the application requirement, you can enable and disable gestures by
selecting the specific checkbox. Do the following to enable gestures and configure the corresponding
parameters.

• Select the widget for which gesture feature must be enabled in the Widget pane. If you have multiple
widgets in the project, the PSoC™ Creator allows gesture recognition only one widget. However, in
ModusToolbox™, gesture recognition can be enabled on more than one widget.

• Select the desired gestures in Gestures pane. User has an option to select multiple gestures. In

PSoC™ Creator, you cannot enable scroll gesture and flick gesture at the same time. This is applicable for
both sliders and touchpad. However, in ModusToolbox™, you can enable more than one gesture according
to the application requirement.

• Configure all parameters in the Parameter pane. When a gesture is selected, the right pane of the window

dispays the parameters of the selected gesture group. See the Component datasheet / middleware
document.

Application Note 147 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Gesture in CAPSENSE™

Figure 107 Configuring gestures in CAPSENSE™ component

6.3.3 Firmware implementation with timestamp

See the code example PSoC™ 4 CAPSENSE™ Touchpad Gestures to understand how to implement timestamp

for gesture recognition. Because each gesture has a pattern of touch that changes with time, a reference
timestamp is needed for properly getting the touch data with respect to time. This time stamp represents the
sampling rate for the gesture recognition algorithm. Both the centroid positions and their respective

timestamp are used by the gesture decoding API to determine different predefined gesture patterns that are

applicable for the widget.

First, tune the widget using the procedure described in Tuning the widget and determine the time interval
between two successive CAPSENSE™ scans in the firmware. Update the timestamp exactly with this duration.
The way to accurately determine it is to toggle a GPIO in the firmware after the CAPSENSE™ scan is complete
and find the time duration using an oscilloscope.

6.3.4 Tuning gesture parameters

This section describes how to set gesture parameters for sliders; the same procedure could be extended to the

gesture groups supported by touchpads. CAPSENSE™ sliders support Click, One-finger Scroll, and One-finger
flick gesture features. See the Component datasheet / middleware document.

https://www.cypress.com/documentation/code-examples/ce224820-psoc-4-capsense-slider-and-gestures

Application Note 148 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Gesture in CAPSENSE™

6.3.4.1 Using tuner GUI for tuning gesture parameters

You can use the Gesture View in Tuner GUI for tuning the gesture parameters and visualize and analyze the
performance of the gesture detected in the end system.

Ensure the following while using Tuner GUI for gestures:

1. For tuning gesture parameters in runtime, Tuner GUI must be used with EZI2C. Use Synchronized
communication mode for visualizing the detected gestures in runtime. For more details on using the Tuner

GUI, see the Component datasheet / middleware document and the PSoC™ 4 CAPSENSE™ touchpad
gestures code example. All the parameters for the gestures that are available in the CAPSENSE™
configurator are available in Tuner GUI, where you can directly edit these values for tuning.

2. As Figure 108 shows, the Gesture View tab is organized into different panes as follows:

Gesture Event History pane shows detected gestures and their positions on the widget.

Detected Gesture pane indicates the detected gesture. If the delay checkbox is enabled, a gesture picture is
displayed for the specified time-interval; if delay is disabled, the last reported gesture picture is displayed
until a new gesture is reported.

Cypress® Icon in the Tuner GUI moves according to the scroll gesture. It indicates how well the parameter
of the scroll gesture is tuned. This dynamic feature gives performance feedback for further fine-tuning
gesture parameters.

Figure 108 Tuner GUI for gestures

3. Determining the event duration using Tuner GUI. A general equation to determine the event duration is
given by Equation 71.

Equation 71. Gesture duration

 𝐸𝑣𝑒𝑛𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑁𝑜. 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑥 𝑇𝑠𝑎𝑚𝑝𝑙𝑒

Where,

𝑁𝑜. 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = Number of samples the gesture event occurred. This data could be obtained from the Graph

View in the Tuner GUI.

𝑇𝑠𝑎𝑚𝑝𝑙𝑒 = Time interval between two samples.

https://www.cypress.com/documentation/code-examples/ce224820-psoc-4-capsense-slider-and-gestures
https://www.cypress.com/documentation/code-examples/ce224820-psoc-4-capsense-slider-and-gestures

Application Note 149 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Gesture in CAPSENSE™

𝑇𝑠𝑎𝑚𝑝𝑙𝑒 =
1

𝑅𝑒𝑓𝑟𝑒𝑠ℎ 𝑟𝑎𝑡𝑒

Figure 109 Determining the Gesture parameters using Tuner GUI

6.3.4.2 Click

There are two type of click gestures: single-click and double-click. Table 22 lists the parameters to be

configured for the Click gesture in both PSoC™ Creator and in ModusToolbox™. See Component datasheet /

middleware document. Table 23 provides the recommended values of the gesture parameter for the Click

gesture.

 Click gesture parameters

Gesture PSoC™ Creator ModusToolbox™

Single-click

One finger minimum touch duration Minimum click timeout

One finger maximum touch duration Maximum click timeout

Maximum position displacement Maximum click distance

Double-click

Minimum interval between touches Minimum second click interval

Maximum interval between touches Maximum second click interval

Maximum displacement for the second click Maximum second click distance

Touch event: No of samples 2
Touch event: No of samples 3

Duration between two touch: No of samples 8

Maximum position displacement

4

Application Note 150 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Gesture in CAPSENSE™

 Recommended values for click gestures

Parameters Typical values

Maximum position displacement 20% of maximum position of the slider

Maximum position displacement for the second click 20% of maximum position of the slider

Minimum interval between touches (ms) 60

Maximum interval between touches (ms) 400

One finger minimum touch duration (ms) 20

One finger maximum touch duration (ms) 400

6.3.4.2.1 Single click

A single click is defined as a touch-down event followed by a lift-off. Figure 110 shows the spatial and timing
condition that must be satisfied for a valid single-click event.

Figure 110 Single-click gesture

From Figure 110, at time T1, the finger touched down on the slider; at time T2, the finger is lifted off from the
slider. For a valid single click, the touch-down duration should be between the “One finger minimum touch

duration” and “one-finger maximum touch duration” and the relative position of the liftoff from the initial
position of touch should be less than the “Maximum position displacement” parameter.

The duration of each single-click event can be determined by using Equation 71 by finding the number of
samples for the single click in the Graph view of Tuner GUI and the refresh rate as shown in Figure 109. From
the single-click event duration, fix the parameters “One-finger minimum touch duration” and “One-finger

maximum touch duration”. The maximum position displacement parameter can be determined by observing
the maximum variation in the centroid position using the Tuner GUI as shown in Figure 109. The

recommended value is 20 percent of the maximum centroid position of the slider as mentioned in Table 23.

Application Note 151 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Gesture in CAPSENSE™

6.3.4.2.2 Double click

A double click is two single-clicks event occurring one after another with the second click occurring between
the minimum and maximum time interval between the two touches. In addition, the relative position of the

second click from the initial position of touchdown event should be less than the maximum position
displacement for the second click. Figure 111 shows the spatial and timing conditions that must be satisfied
for a valid double-click event.

Figure 111 Double-click gesture

From Figure 111, at time T1, the finger touched down on the slider for the first click; at time T2, the finger is

lifted off from the slider. At T3, the finger touched down on the slider for the second click; at T4, the finger is
lifted off from the slider. For a valid double click, each click should satisfy the condition of single click, and the
second click should occur between Minimum and Maximum interval between touch parameters.

Using the Graph view in the Tuner GUI, observe the double-click touch data. Determine the parameter of single

click as mentioned in the Single section. Determine the duration between the two touches using the Graph

view in the Tuner GUI and set the value of the minimum and maximum intervals between touch parameters. A

typical captured data for the double-click event is shown in Figure 109.

6.3.4.3 Scroll

There are two different scroll gestures that can be detected on sliders: One-finger scroll and One-finger Inertial
scroll. See Component datasheet / middleware document. Table 24 shows the parameters to be configured
for the scroll gesture. Note that One-finger Inertial Scroll gesture is not supported in ModusToolbox™.

Application Note 152 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Gesture in CAPSENSE™

 One finger scroll parameters

Gesture PSoC™ Creator ModusToolbox™

One-finger scroll

Position threshold N Minimum scroll distance

Scroll step -

Debounce Scroll debounce

One-finger inertial scroll
Position inertial threshold

NA
Count level

6.3.4.3.1 One-finger scroll

A One-finger Scroll gesture is a combination of a touchdown followed by a displacement in specific direction.

The change in position between two consecutive scans must exceed the Position Threshold value given in the
configurator after tuning. See Component datasheet / middleware document.

Follow these steps to set the scroll gesture parameter values as shown in Table 24.

1. Determine the number of samples of the scroll gesture from the Graph view (Centroid position) in Tuner
GUI.

2. By using Equation 71 determine the duration of the complete scroll.

3. Determine the change in centroid position for the complete scroll using the Tuner GUI.

4. Determine Position Threshold Equation 72. Each gesture is scanned at a sample rate that is set in the
timestamp in the application code. The position threshold is given by the change in the centroid position for

the duration that is set in the timestamp.

Equation 72. Equation to determine position tshreshold

 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑐𝑟𝑜𝑙𝑙
 𝑥 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

5. In PSoC™ Creator, set four different position thresholds and their scroll count values in the configurator,

which are determined by varying the speed of the scroll gesture. Now, change the speed of scroll and repeat

the steps 1 – 4 and set these position threshold values. In ModusToolbox™ has only one parameter:
Minimum Scroll distance; determine its value in the same way you determined the position threshold.

6. Read the scroll step from the CAPSENSE™ data structure and use it to control the speed and smoothness of
the scroll gesture. The scroll step depends on the position threshold. This scroll step is used in the

application code to control the actual variable value to be changed with respect to scroll. Note that the
scroll step parameter is not available in ModusToolbox™.

7. Set the maximum slider position as ten times the dimension of the slider as a general rule. If you set

scrollDistanceMin=10, everything below a 1-mm movement will not detect the scroll gesture. Everything

above this number might detect a gesture.

Observe the Cypress® icon in the Tuner GUI (see Figure 108) to get a feedback on how well the tuning has been
done for the scroll gesture in the given hardware. You can also print the variable that must be controlled by

scroll through UART to visualize how the value is changing with respect to scroll. This could be used as a visual

feedback. The position threshold parameters and the corresponding step counts should be tuned until the
variation in the variable value with respect to scroll meet the requirement of the end user application.

Application Note 153 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Gesture in CAPSENSE™

6.3.4.3.2 One-finger inertial scroll

The one-finger Inertial scroll gesture is defined as a touchdown event followed by a minimum displacement in a
specific direction, and then a liftoff. The movement of scroll will automatically stop when it reaches the end

value of the variable. See Component datasheet / middleware document.

The gesture parameter is provided in Table 24. The position inertial threshold parameter is given by the

minimum change in centroid position that is required before a liftoff; its value can also be determined by steps
in the One-finger scroll section. The count value parameter defines the momentum of scroll; it can take two
possible values: low or high. Choose the count value according to the end application requirement.

6.3.4.4 One-finger flick

A flick gesture is a touchdown event followed by a high-speed displacement and a liftoff event (see Component
datasheet / middleware document). The flick gesture is similar to the One-finger Inertial Scroll; the only
difference is that it requires a high-speed displacement followed by a liftoff event within the maximum sample
interval defined in the configurator. You can determine the position threshold and the maximum sample

interval by following the same procedure in One-finger scroll section and by using Equation 71.

 One-finger flick gesture parameters

Gesture PSoC™ Creator ModusToolbox™

One Finger Flick Gesture
Position threshold Minimum flick distance

Maximum sample interval Maximum flick timeout

6.4 Two-finger gesture implementation

Two-finger gestures such as Two-finger Scroll and Two-finger Zoom are supported in the touchpad widget. You
must enable this feature in the Widget Details tab of the Touchpad Widget. The procedure for tuning the
parameters is the same as mentioned in the One-finger gesture implementation section (see Component

datasheet / middleware document). Figure 112 shows how to enable two-finger touch gestures in the

configurator, select the centroid type as 5 x 5 Centroid, and set the two-finger detection as True.

Application Note 154 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Gesture in CAPSENSE™

Figure 112 Enabling two-finger touch gestures in the CAPSENSE™ component

6.5 Advanced filters for gestures

Advanced filtering features for gestures such as Ballistic multiplier, Adaptive IIR filter, and the Edge correction

feature are available to improve gesture recognition and the user experience.

See Component datasheet / middleware document.

Application Note 155 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7 Design considerations

This chapter explains the firmware and hardware design considerations for CAPSENSE™.

7.1 Firmware

The CAPSENSE™ component provides multiple application programming interfaces to simplify firmware
development. The CAPSENSE™ Component datasheet provides a detailed list and explanation of the available

APIs. You can use the CAPSENSE™ Example projects provided in PSoC™ Creator or ModusToolbox™ to learn
schematic entry and firmware development. See Chapter 4 for more details.

The CAPSENSE™ scan is non-blocking in nature. The CPU intervention is not required between the start and the
end of a CAPSENSE™ scan. Therefore, you can use CPU to perform other tasks while a CAPSENSE™ scan is in

progress. However, note that CAPSENSE™ is a high-sensitive analog system. Therefore, sudden changes in the
device current may increase the noise present in the raw counts. If you are using widgets that require high

sensitivity such as proximity sensors, or buttons with thick overlay, you should use a blocking scan. Example
firmware for a non-blocking scan is shown below.

Code Listing 1

/* Enable global interrupts */

 CyGlobalIntEnable;

 /* Start EZI2C component */

 EZI2C_Start();

 /*

 * Set up communication data buffer to CapSense data structure to

be

 * exposed to I2C master at primary slave address request.

 */

 EZI2C_EzI2CSetBuffer1(sizeof(CapSense_dsRam),

 sizeof(CapSense_dsRam),

 (uint8 *)&CapSense_dsRam);

 /* Initialize CapSense component */

 CapSense_Start();

 /* Scan all widgets */

 CapSense_ScanAllWidgets();

 for(;;)

 {

 /* Do this only when a scan is done */

 if(CapSense_NOT_BUSY == CapSense_IsBusy())

http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd

Application Note 156 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Code Listing 1

 {/* Process all widgets */

 CapSense_ProcessAllWidgets();

 /* Scan result verification */

 if (CapSense_IsAnyWidgetActive())

 {

 /* Add any required functionality

 based on scanning result */

 }

 /* Include Tuner */

 CapSense_RunTuner();

 /* Start next scan */

 CapSense_ScanAllWidgets();

 }

 /* CPU Sleep */

 CySysPmSleep();

 }

}

You should avoid interrupted code, power mode transitions, and switching ON/OFF peripherals while a high-

sensitivity CAPSENSE™ scan is in progress. However, if you are not using high-sensitivity widgets, you can use

CPU to perform other tasks. You can also use low-power mode of PSoC™ to reduce the average power
consumption of the CAPSENSE™ system, as explained in the next section. Monitoring and verifying the raw
counts and SNR using the Tuner GUI is recommended if you are using a non-blocking code.

If you want to develop firmware using the ModusToolbox™ software, see the references in the ModusToolbox™

section of this document.

7.1.1 Low-power design

PSoC™ low-power modes allow you to reduce overall power consumption while retaining essential
functionality. See AN86233 - PSoC™ 4 low-power modes and power reduction techniques, for a basic
knowledge of PSoC™ 4 low-power modes, see AN219528 - PSoC™ 6 MCU low-power modes and power

reduction techniques, for PSoC™ 6’s low-power modes and AN210998 - PSoC™ 4 low-power CAPSENSE™

design, for design a low-power CAPSENSE™ application.

The CPU intervention is not required between the start and the end of a CAPSENSE™ scan. If the firmware does
not have any additional task other than waiting for the scan to finish, you can put the device to Sleep mode
after initiating a scan to save power. When the CSD hardware completes the scan, it generates an interrupt to
return the device to the Active mode.

There are different firmware and hardware techniques to reduce the power consumption of the CAPSENSE™
system.

1. If you use APIs that scan multiple widgets together, the device returns to Active mode after finishing the

scan of a single widget. Therefore, you should scan each widget individually for reducing the power

consumption in the design. See the CAPSENSE™ Component datasheet.

http://www.cypress.com/?rID=78797&source=an85951
https://www.cypress.com/documentation/application-notes/an219528-psoc-6-mcu-low-power-modes-and-power-reduction-techniques
https://www.cypress.com/documentation/application-notes/an219528-psoc-6-mcu-low-power-modes-and-power-reduction-techniques
http://www.cypress.com/go/AN210998
http://www.cypress.com/go/AN210998

Application Note 157 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

2. You can use the Deep-Sleep mode of PSoC™ to considerably reduce the power consumption of a
CAPSENSE™ design. However, the CAPSENSE™ hardware is disabled in the Deep-Sleep mode. Therefore, the

device must wake up frequently to scan for touches. You can use the watchdog timer (WDT) in PSoC™ to
wake up the device from the Deep-Sleep mode at frequent intervals. Increasing the frequency of the scans

improves the response of the CAPSENSE™ system, but it also increases the average power consumption.

3. As the number of sensors in the design increases, the device has to spend more time in the Active mode to
scan all sensors. This, in turn, increases the average power consumption. For saving power in a design with
multiple sensors, you should include a separate proximity loop that surrounds all the sensor. When the
device wakes up from the Deep-Sleep mode, only scan this proximity sensor. If the proximity sensor is
active, the device must stay in the Active mode and scan other sensors. If the proximity sensor is inactive,

the device can return to the Deep-Sleep mode. Figure 113 illustrates this process.

Proximity Sensor Inactive?

Scan All CapSense Sensors Individually

Enter Deep-Sleep mode

Scan Only the Proximity Sensor

Touch

Detected ?

No

Yes

No

Yes

Timed Wakeup (WDT)

Figure 113 Low-power CAPSENSE™ Design

4. The CAPSENSE™ component can reduce power consumption by reducing the execution time of scanning by

ganging sensors together and managing scanning at the application level. In this case, all the sensors in the

design are “ganged” i.e., simultaneously connected to the AMUX bus to form a virtual sensor. See the code
example PSoC™ 4 low power ganged sensor and AN92239 - Proximity sensing with CAPSENSE™ for
details on ganged sensor implementation. A ganged sensor has different tuning parameters because its
properties are different compared to considering the sensors individually. Therefore, it should be

considered as a single CSD button and tuned separately; see Manual tuning. The ganged sensor is

periodically scanned by using a watchdog timer (WDT); if the ganged sensor reports a touch event, enable
the scanning of the actual widgets that need to be scanned. This is helpful in CAPSENSE™ designs that
requires Wake on Touch modes. The procedure is similar to what is explained in Figure 113. You can
achieve very low system current while maintaining a good touch response, by properly tuning CAPSENSE™

and the wakeup interval. This technique could also be used with the CSX touchpad widget.

https://www.cypress.com/documentation/code-examples/ce210290-psoc-4-capsense-low-power-ganged-sensor
https://www.cypress.com/documentation/application-notes/an92239-proximity-sensing-capsense

Application Note 158 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

5. If high-speed peripherals such as system timers and I2C are required, you can put the CPU to sleep mode
instead of going to deep sleep mode.

6. You can also add a shield hatch in the design, as explained in Driven-shield signal and shield to reduce the
parasitic capacitance and therefore, the scan time. The scan time and power consumption is directly
related; thus, the power consumption is reduced by lowering the scan time.

Note: In PSoC™ 4000 devices, it is not recommended to enter Sleep mode if a CAPSENSE™ scan is in
progress.

7.2 Sensor construction

A capacitive sensor can be constructed using different materials depending on the application requirement. In

a typical sensor construction, a conductive pad, or surface that senses a touch is connected to the pin of the
PSoC™ using a conductive trace or link. This whole arrangement is placed below a non-conductive overlay
material and the user interacts on top of the overlay.

Figure 114 shows the most common CAPSENSE™ sensor construction.

Figure 114 CAPSENSE™ sensor construction

The copper pads etched on the surface of the PCB act as CAPSENSE™ sensors. A nonconductive overlay serves
as the touch surface. The overlay also protects the sensor from the environment and prevents direct finger

contact. A ground hatch surrounding the sensor pad isolates the sensor from other sensors and PCB traces.

If liquid tolerance is required, you should use a shield hatch instead of the ground hatch. In this case, drive the
hatch with a shield signal instead of connecting it to ground. See Liquid tolerance section for details.

The simplest CAPSENSE™ PCB design is a two-layer board with sensor pads and hatched ground plane on the

top, and the electrical components on the bottom. Figure 115 shows an exploded view of the CAPSENSE™

hardware.

Application Note 159 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Overlay

PCB

PSoC

Figure 115 CAPSENSE™ hardware

Sensors may also be constructed by using materials other than copper, such as indium tin oxide (ITO) or
printed ink on substrates such as glass or a flex PCB. In some cases, springs can also be used as CAPSENSE™

sensors as Figure 116 shows, to create elevated sensors that allow overlay to be placed at an elevated distance

from the PCB. See Getting started with CAPSENSE™ design guide for PCB design considerations specific to
spring sensors and other non-copper sensors such as ITO and printed ink.

Figure 116 Sensor construction using springs as sensors

7.3 Overlay selection

7.3.1 Overlay material

The overlay is an important part of CAPSENSE™ hardware as it determines the magnitude of finger capacitance.

The finger capacitance is directly proportional to the relative permittivity of the overlay material. See Finger
capacitance for details.

Table 26 shows the relative permittivity of some common overlay materials. Materials with relative permittivity
between 2.0 and 8.0 are well suited for CAPSENSE™ overlay.

 Relative permittivity of overlay materials

Material r

Air 1.0

Formica 4.6 – 4.9

Glass (Standard) 7.6 – 8.0

Glass (Ceramic) 6.0

PET film (Mylar) 3.2

http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense

Application Note 160 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Material r

Polycarbonate (Lexan) 2.9 – 3.0

Acrylic (Plexiglas) 2.8

ABS 2.4 – 4.1

Wood table and desktop 1.2 – 2.5

Gypsum (Drywall) 2.5 – 6.0

Note: Conductive materials interfere with the electric field pattern. Therefore, you should not use

conductive materials for overlay. You should also avoid using conductive paints on the overlay.

7.3.2 Overlay thickness

Finger capacitance is inversely proportional to the overlay thickness. Therefore, a thin overlay gives more signal

than a thick overlay. See Finger capacitance for details.

Table 27 lists the recommended maximum thickness of acrylic overlay for different CAPSENSE™ widgets.

 Maximum thickness of acrylic overlay

Widget
Maximum thickness (mm) –

4th Generation CAPSENSE

Maximum thickness (mm) –

5th Generation CAPSENSE

Button 5 18

Slider 51 18

Touchpad 0.5 3

Because Finger capacitance also depends on the dielectric constant of the overlay, the dielectric constant also
plays a role in the guideline for the maximum thickness of the overlay. Common glass has a dielectric constant

of approximately εr = 8, while acrylic has approximately εr = 2.5. The ratio of εr/2.5 is an estimate of the overlay
thickness relative to plastic for the same level of sensitivity. Using this rule of thumb, a common glass overlay
can be about three times as thick as a plastic overlay while maintaining the same level of sensitivity.

In addition, avoid using very thin or no overlay. It is important to have a minimum overlay thickness in a
CAPSENSE™ design for the following reasons:

a) An overlay provides protection from the environmental condition, prevents direct finger contact, and gives

ESD protection. The overlay thickness should be small enough to give a good signal, and decided based on

the button size and the strength to withstand ESD. See AN64846 - Getting started with the CAPSENSE™.

b) For the CSD button, if there is no overlay the buttons will be over sensitive.

c) For sliders, if there is no overlay, the raw count may saturate for the slider segments and may cause non-
linear centroid response for slider. See Slider design.

d) For the CSX sensor, it is recommended to have a minimum overlay thickness of 0.5 mm. If it is violated,

sudden decrease in raw count is observed when a finger is placed on a sensor or a water drop falls on the Tx

and Rx electrodes. See Effect of grounding.

1 For a 5-mm acrylic overlay, the SmartSense Component requires a minimum of 9-mm finger diameter for slider operation. If the finger diameter is less than 9 mm, Manual

Tuning should be used.

https://www.cypress.com/file/41076/download

Application Note 161 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7.3.3 Overlay adhesives

The overlay must have a good mechanical contact with the PCB. You should use a nonconductive adhesive film
for bonding the overlay and the PCB. This film increases the sensitivity of the system by eliminating the air gap

between the overlay and the sensor pads. 3M™ makes a high-performance acrylic adhesive called 200MP that is
widely used in CAPSENSE™ applications. It is available in the form of adhesive transfer tapes; example product
numbers are 467MP and 468MP.

7.4 PCB layout guidelines

PCB layout guidelines help you to design a CAPSENSE™ system with good sensitivity and high Signal-to-noise

ratio (SNR).

7.4.1 Sensor CP

In a CAPSENSE™ system design, the CP of the sensor must be within the supported range of the device. You can

find the supported CP range in the Component datasheet / middleware document. The main components of

CP are trace capacitance, sensor pad capacitance, and pin capacitance of the device. The pin capacitance is
device-dependent (see the Device datasheet), so you can only design your sensor and trace capacitance to be

able to meet the CP criteria in the datasheet. The relationship between CP and the PCB layout features is not
simple. CP increases with an increase in the sensor pad size and trace length and width, and with a decrease in

the gap between the sensor pad and the ground hatch.

There are many ways to decrease the CP:

• Decrease the trace length and width as much as possible. Reducing the trace length increases noise

immunity.

• Drive the hatch with a shield signal. See Driven-shield signal and shield electrode.

Reducing the sensor pad size is not recommended because it also reduces the finger capacitance. In some

special cases, such as small sensor pad and very small trace length due to placement of the sensor pad close to
the device, there is a possibility of the sensor CP to be lower than the supported minimum CP by the device. In
that case, add a footprint of the capacitor across the sensor or any unused pin. If the CP is identified to be lower

than the supported range, place a 4.7-pF capacitor across the sensor or on the unused pin and gang the

capacitor during the CAPSENSE™ scan, refer to the FAQ 5.3.7.7 for more details. This will increase the CP of the
sensor to the supported range.

If the sensor CP is very high due to long traces or because of a nearby ground, use the mutual-capacitance
sensing method so that the sensitivity is not degraded because of the high CP value. The sensitivity of the

CAPSENSE™ sensor in a mutual-capacitance sensing method is independent of the sensor CP.

7.4.2 Board layers

Most applications use a two-layer board with the sensor pads and the hatched ground planes on the top side
and all other components on the bottom side. PCBs that are more complex use four layers.

• FR4-based PCB designs perform well with board thickness ranging from 0.020 inches (0.5 mm) to
0.063 inches (1.6 mm).

• Flex circuits work well with CAPSENSE™ too. You can use flex circuits for curved surfaces. All PCB guidelines
in this document also apply to flex. You should use flex circuits with thickness 0.01 inches (0.25 mm) or
higher for CAPSENSE™. The high breakdown voltage of the Kapton® material (290 kV/mm) used in flex
circuits provides built in ESD protection for the CAPSENSE™ sensors.

Application Note 162 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7.4.3 Button design

7.4.3.1 Self-capacitance button design

The self-capacitance button has a single electrode and can have different shapes and size as recommended
below.

Shape: You should use circular sensor pads for CAPSENSE™ buttons. Rectangular shapes with rounded corners

are also acceptable. However, you should avoid sharp corners (<90º) since they concentrate electric fields.

Figure 117 shows recommended button shapes.

Figure 117 Recommended button shapes

Size: Button diameter should be 5 mm to 15 mm, with 10 mm suitable for most applications. A larger diameter
is appropriate for thicker overlays.

Spacing: The width of the gap between the sensor pad and the ground hatch should be equal to the overlay
thickness, and range from 0.5 mm to 2 mm. For example, if the overlay thickness is 1 mm, you should use a 1-

mm gap. However, for a 3-mm overlay, you should use a 2-mm gap.

Select the spacing between two adjacent buttons such that when touching a button, the finger is not near the
gap between the other button and the ground hatch, to prevent false touch detection on the adjacent buttons,

as Figure 118 shows.

Button 1 Button 2GND

 Overlay

 PCB

GND

Finger

Button 1 Button 2GND

 Overlay

 PCB

GND

Finger

Good Bad

Electric field Electric field

Figure 118 Spacing between buttons

Application Note 163 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7.4.3.2 Mutual-capacitance button design

Mutual capacitance sensing measures the change in capacitive coupling between two electrodes. The sensor
pattern should be designed in such a way that the finger disturbs the electric field between the Tx and Rx

electrodes to a maximum extent. There are standard button patterns that could be used for the mutual
capacitance button design and their parameters could be modified based on the application requirement.
Fishbone pattern is one of the mutual capacitance patterns which give better performance in terms of SNR.

7.4.3.2.1 Fishbone pattern

Prongs or fishbone are standard shapes for mutual-capacitance buttons. The Tx forms a box or ring around the

button for shielding Rx from noise. There are interlaced Tx and Rx prongs inside the border to form the electric
field. Figure 119 shows an example of a two-prong fishbone sensor structure with top and bottom view with

hatched ground. The gap between the outer wall of the Tx electrode and the coplanar hatch ground should be
greater than the air-gap of Tx and Rx electrodes. The reference plane (PCB bottom layer) of the Fishbone

structure should have void region as shown in Figure 119.

Figure 119 CSX Fish bone button pattern with two Rx prongs

Table 28 lists the suggested fishbone button design parameters for some commonly used sensor sizes and

overlay like glass and acrylic. As explained in section Sensor size, the recommended button size is to keep the
button X and Y dimension close to the sum of expected user finger size and overlay thickness. However, the

table lists multiple button sizes that you can chose from if you have constraints on available space on board or
if you would like to have a bigger button for your application for ease of user interaction etc.

Also, note that for a given button size, the achievable SNR decreases with increased overlay thickness. Thus, if
you plan to use thick overlays (approx. > 1mm acrylic or 2mm glass) ensure to avoid compromising on button

size due to board space because that will further limit the button SNR performance. Ensure to use bigger
buttons (>= biggest expected finger size) for such thick overlays. And also, for small buttons better to have thin

overlays for getting good SNR.

Application Note 164 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

 Dimension of Fishbone buttons (all units in mm)

Button

size
(X-size, Y-

size) (mm)

Number
of Rx-

prongs

Air gap

between
Tx and Rx

in mm

Tx width

in mm

Rx width

in mm

X-wall
wdth in

mm

Y-wall
width in

mm

Y prong in

mm

5, 5 3 0.35 0.48 0.48 0.24 0.24 0.2

10,7 3 0.75 0.92 0.92 0.46 0.46 0.2

10,5 3 0.5 1.17 1.17 0.58 0.58 0.2

10,10 2 0.9 1.60 1.60 0.80 0.80 0.2

12, 12 2 1.3 1.70 1.70 0.85 0.85 0.2

13, 10 2 1.1 2.15 2.15 1.08 1.08 0.2

13, 13 2 1.5 1.75 1.75 0.88 0.88 0.2

15, 15 2 1.7 2.05 2.05 1.03 1.03 0.2

17, 17 2 2.3 1.95 1.95 0.98 0.98 0.2

20, 13 2 1.8 3.20 3.20 1.60 1.60 0.2

25, 13 2 2 4.25 4.25 2.13 2.13 0.2

The above button design parameters in Table 28 ensure a good SNR performance if you follow the schematics

and layout guidelines in this chapter.

Note: In case if you expect a higher external noise in the design and for other complex cases you can

contact Technical support for any assistance in the button design. Refer to the section Noise in

CAPSENSE™ system for more details about the external noise. And in the design if you expect a
low CM then follow the guidelines mentioned in the section I am observing a low CM for my CSX
for mitigating it.

7.4.3.2.2 Button design for arbitrary shapes and dimensions

Figure 120 shows the different orientation of Rx prongs in the Fish bone pattern, in Button A the Rx prong is
perpendicular to the side of the button with larger dimension and in Button B the Rx prongs is parallel to the

side of the button with larger dimension. Orientation of Rx prongs like in Button A results in optimized button
pattern compared to Button B. Thus, it is always recommended to have Rx prongs perpendicular to the side of

the button with larger dimension. Thus if you need a 10  13mm button, then simply use the 13  10 mm button

from Table 27 and rotate it 90º to get 13  10 mm Noise in CAPSENSE™ system button pattern as shown in
Figure 121.

Figure 120 Orientation of Rx prongs

Application Note 165 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Figure 121 Rotating the button 90 deg to get the desired button dimension

There may be some design where you need a different button shape than the recommended rectangular, like

an oval or circular shape etc. The below steps explain how to construct the button with nonstandard shape

from the standard Fish bone pattern.

• First select the Fishbone pattern (Rectangular shape for oval shape and Square button for circular shape)
from Table 27 to cover the desired button shape.

• Then in the user interface or above the overlay print button shape with required dimension over the

fishbone pattern as shown in Figure 122.

Mutual capacitance buttons designed using this method have some oversensitive area or less sensitive outside
the button shape as shown in the below figures, this could be mitigated by properly tuning the software

thresholds of the mutual capacitance button. The below figure shows an example of a circular button made
using a square fishbone pattern.

Figure 122 Arbitrary shape button design based on arbitrary pattern

If you want a pattern that is not present in Table 27, you can obtain the button parameters by following few

steps. For example, if you want a 19x19 pattern, choose the pattern that is close to the required pattern from
Table 27 like 17x17, and scale the air gap between Tx and Rx with respect to the button areas. For example:

𝑁𝑒𝑤𝑔𝑎𝑝 = 𝑇𝑥𝑅𝑥𝑔𝑎𝑝 ∗ (
𝐵𝑢𝑡𝑡𝑜𝑛𝐴𝑟𝑒𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝐵𝑢𝑡𝑡𝑜𝑛𝐴𝑟𝑒𝑎𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
)

Where, ButtonArea = X x Y dimension of the sensor.

Compute the Tx, Rx width and Tx wall based on the assumption below and by considering the 𝑁𝑒𝑤𝑔𝑎𝑝 as

obtained above. The obtained values of the button design parameters are shown in Table 28. Refer to the
Figure 119 to understand the description of the button design parameters.

𝑇𝑥𝑤𝑖𝑑𝑡ℎ = 𝑅𝑥𝑤𝑖𝑑𝑡ℎ

Application Note 166 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

𝑇𝑥𝑤𝑎𝑙𝑙 =
𝑇𝑥𝑤𝑖𝑑𝑡ℎ

2

 Button parameter for 19  19 button form 17  17 button

Button size
(X-size,

Y-size)

(mm)

Number
of Rx-

prongs

Air gap

between Tx
and Rx in

mm

Tx
width in

mm

Rx width

in mm

X-wall
width in

mm

Y-wall
width in

mm

Y prong in

mm

17, 17 2 2.3 1.95 1.95 0.98 0.98 0.2

19,19 2 2.9 1.85 1.85 0.93 0.93 0.2

7.4.3.2.3 General recommendations on Fishbone pattern parameters

Sensor size

The sensor size is the XY dimension of the button, it is selected based on the board space availability, expected
user finger size and overlay material and thickness. Sensor size selection also depends upon the number of
required buttons on the PCB considering required button-to-button gap and space availability in the PCB. But if

the space is not the constrain then choose higher button size which will result in getting a good SNR. Note that
increasing the sensor size beyond a point will cause the SNR to saturate, this is because some of the electric

field lines from Tx/Rx electrode do not interact with the finger as shown in Figure 123.

Figure 123 Interaction of electric filed with the finger

The SNR of the button is decreased with usage of thick overlays. Thus, the recommended minimum sensor size

is finger size plus overlay thickness to achieve a good SNR even with thick overlays. For example, the minimum

sensor size recommended could be 13x10 mm, considering the finger size around 10mm in diameter and 3 mm
overlay thickness. As mentioned in the Button design for arbitrary shapes and dimensions Rx prongs should

be perpendicular to the side with large dimension.

Button spacing

The button spacing is the gap between the Tx wall of two buttons. It helps to prevent user error by isolating the
buttons from each other and reduces the cross talk. It is recommended to keep a minimum of 8mm spacing

between the buttons this will ensure a good single touch and multi touch performance.

Application Note 167 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Overlay

The overlay thickness and overlay permittivity influences the SNR of the button and immunity towards the
external noise such as ESD. Refer to the Overlay selection section for more details. It is recommended to keep
the overlay thickness as minimum as possible which will help in getting a higher SNR for the button and it
should be high enough to provide immunity towards ESD noise. In some cases, if the overlay thickness is more

and you cannot avoid it due to mechanical design consideration. In such a case, for getting a better SNR use a
mutual capacitance button with bigger size than the recommended size. Refer to the section Sensor size for
selecting the minimum button dimension with respect to the overlay thickness. Using an overlay material with
higher dielectric constant will also leads to higher SNR. So always use material with high dielectric constant
when we use thick overlay. And also, for smaller buttons better to have thin overlays for getting good SNR.

Air gap between Tx and Rx electrode

The gap between the Tx and Rx electrode influences the mutual capacitance between the Tx and Rx electrode.
Increasing the gap reduces the mutual capacitance. It is the most critical parameter in the Fishbone pattern
design and the gap between the Tx and Rx electrode such that the mutual capacitance is above 750fF.

Number of Rx-prongs

The number of Rx prongs influence the mutual capacitance between the Tx and Rx electrode, because
increasing the number of Rx prongs decreases the gap between the Tx and Rx electrode for a given button size.

Higher mutual capacitance implies higher electric field lines between Tx and Rx electrode. Thus, we get a
higher signal when we touch the button, because the finger touch will disturb the electric field to a maximum

extent. But higher CM also increases the impact of external noise such as VDDA ripple noise. Thus, there is a
tradeoff in selecting the number of Rx prongs to get a higher signal verses getting good noise immunity. The

optimal number of Rx prongs is 2 for the Fishbone pattern (i.e. Fishbone pattern with a single Tx prong and two

Rx prongs). The below figure shows the mutual capacitance button with three and one number of Rx prongs.

Figure 124 Mutual capacitance button with different number of prongs

Tx electrode and Rx electrode width

The Tx electrode and Rx electrode width influences the mutual capacitance between Tx and Rx electrode. Best
signal response is achieved when Rx width/area is equal to Tx width/area in the case of less external noise in
the system. The below figure shows the electric filed lines from Tx to Rx electrode with equal and unequal
widths. Thus, from the below figure it is clear that having equal Tx and Rx width will eventually leads to higher
change in CM for a finger touch.

Application Note 168 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Figure 125 Effect of Tx and Rx width

In some cases, it is required to provide liquid tolerance to the mutual capacitance button as mentioned in

section Liquid tolerance for mutual-capacitance sensing. To achieve that we have to use a hybrid sensing

technique with both CSX and CSD sensing method. In such a case the Tx or Rx electrode whichever is scanned
in CSD technique should have a significant width so that it ensures a good signal for a finger touch.

Co planar ground

Presence of coplanar ground decreases the impact of noise in the system and it also provides good ground
resulting in decreased signal disparity effect. It is recommended to have as much area surrounding the sensor
with hatched pattern and connected it to device ground. Also follow the recommendations as mentioned in the

layout and schematics guidelines in this chapter. Ground plane reduces the coupling of electric field lines to the

approaching finger, which decreases the change in mutual capacitance caused by a finger touch. It is suggested
to avoid having ground plane underneath the sensor unless you expect strong coupling to a noise source
present right below the sensor. Figure 119 shows the coplanar ground on the top and bottom layer of the PCB.

The gap between the outer wall of the Tx electrode and the coplanar hatch ground should be greater than the
air-gap of Tx and Rx electrodes.

Tx wall (X-wall and Y-wall width)

Tx wall act as a shield to the Rx electrode from noise. Wide Tx wall also reduces the effect of cross talk and the
impact of Co-planar ground. It is recommended to keep the Tx wall width approximately equal to half of Tx
electrode width. The below figure shows the effect of wider Tx wall, it increases the number of electric field

lines reaching the finger from the Tx electrode by reducing the impact of Coplanar ground. The width of Tx wall

can also be slightly increased in case Tx electrode is scanned as a CSD sensor as mentioned in section Liquid

tolerance for mutual-capacitance sensing. An example 10x10 pattern with increased Tx wall is given in Table
29.

Application Note 169 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Figure 126 Effect of width of Tx wall

 Dimension of 10  10 button with increased Tx wall (all units in mm)

Button Size

(X-Size, Y-

Size) (mm)

Number

of Rx-

Prongs

Air Gap
between
Tx and Rx

in mm

Tx

Width

in mm

Rx

Width in

mm

X-Wall

Width

in mm

Y-Wall

Width in

mm

Y Prong in

mm

10, 10 2 0.8 1.2 1.2 1.5 1.6 0.2

7.4.4 Slider design

Figure 127 shows the recommended slider pattern for a linear slider and Table 31 shows the recommended

values for each of the linear slider dimensions. A detailed explanation on the recommended layout guidelines is
provided in the following sections.

Effective Slider LengthS
L

D
0

S
L

D
1

S
L

D
2

S
L

D
3

G
N

D
/

S
H

IE
L

D

S
L

D
n

-1

G
N

D
/

S
H

IE
L

D

H

A

W

45
0

H/4

H/4AHS

Effective Slider Length

Figure 127 Typical linear slider pattern

Application Note 170 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

 Linear slider dimensions

Parameter
Acrylic overlay

thickness
Minimum Maximum Recommended

Width of the segment (W)

1 mm 2 mm -

8 mm1 3 mm 4 mm -

4 mm 6 mm -

Height of the segment (H) - 7 mm2 15 mm 12 mm

Air gap between segments

(A)
- 0.5 mm 2 mm 0.5 mm

Air gap between the hatch

and the slider (AHS)
- 0.5 mm 2 mm

Equal to overlay

thickness

7.4.4.1 Slider-segment shape, width, and Air gap

A linear response of the reported finger position (that is, the centroid position) versus the actual finger position
on a slider requires that the slider design is such that whenever a finger is placed anywhere between the middle

of the segment SLD0 and middle of segment SLDn-1, other than the exact middle of slider segments, exactly

two sensors report a valid signal3. If a finger is placed at the exact middle of any slider segment, the adjacent

sensors should report a difference count = noise threshold. Therefore, it is recommended that you use a
double-chevron shape as Figure 127 shows. This shape helps in achieving a centroid response close to the
ideal response, as Figure 128 and Figure 129 show. For the same reason, the slider-segment width and air gap

(dimensions “W” and “A” respectively, as marked in Figure 127) should follow the relationship mentioned in

Equation 38.

Figure 128 Ideal slider segment signals and centroid response

1 The recommended slider-segment width is based on an average human finger diameter of 9 mm. See section Slider-segment shape, width, and Air gap section for more

details.
2 The minimum slider segment height of 7 mm is recommended based on a minimum human finger diameter of 7 mm. Slider height may be kept lower than 7 mm if the overlay

thickness and CAPSENSE™ tuning is such that an Signal-to-noise ratio (SNR) ≥ 5:1 is achieved when the finger is placed in the middle of any segment.
3 Here, a valid signal means that the difference count of the given slider segment is greater than or equal to the noise threshold value.

0

50

100

150

0

50

100

150

SLD0 SLD1 SLD2 SLD3 SLD4

Here, Signalx = Difference Count - Noise Threshold value for
segment x.

C
e

n
tr

o
id

Si
gn

al

Finger Position

Signal0

Signal1

Signal2

Signal3

Signal4

Centroid

Application Note 171 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

S
L

D
1

G
N

D
/

S
H

IE
L

D

S
L

D
0

S
L

D
2

S
L

D
3

S
L

D
4

G
N

D
/

S
H

IE
L

D

Noise Threshold

Finger Threshold

D
if
fe

re
n

c
e

 C
o

u
n

t

SLD0 SLD1 SLD2

8 mm

9 mm

Figure 129 Ideal slider signals

Equation 73. Segment width and air gap relation with the finger diameter

𝑾 + 𝟐𝑨 = 𝒇𝒊𝒏𝒈𝒆𝒓 𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓

Typically, an average human finger diameter is approximately 9 mm. Based on this average finger diameter and

Equation 73, the recommended slider-segment-width and air-gap is 8 mm and 0.5 mm respectively.

If the sum of slider-segment width and 2 * air-gap is lesser than finger diameter, as required according to

Equation 73, the centroid response will be non-linear. This is because, in this case, a finger placed on the slider
will add capacitance, and hence valid signal to more than two slider-segments at some given position, as

Figure 130 shows. Thus, calculated centroid position in Equation 74 will be non-linear as Figure 131 shows.

Noise Threshold

Finger Threshold

D
if
fe

re
n

c
e

 C
o

u
n

t

SLD0 SLD1 SLD2

4 mm

G
N

D
/

S
H

IE
L

D

S
L

D
0

S
L

D
1

S
L

D
3

S
L

D
4

S
L

D
2

G
N

D
/

S
H

IE
L

D

S
L

D
1

9 mm

Figure 130 Finger causes valid signal on more than two segments when slider segment width is lower

than recommended

Equation 74. Centroid algorithm used by CAPSENSE™ component in PSoC™ Creator

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (
𝑆𝑥+1 − 𝑆𝑥−1

𝑆𝑥+1 + 𝑆𝑥 + 𝑆𝑥−1
+ 𝑥) ∗

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

(𝑛 − 1)

Application Note 172 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Where,

Resolution = API resolution set in the CAPSENSE™ component customizer

n = Number of sensor elements in the CAPSENSE™ component customizer

𝑥 = Index of element which gives maximum signal

𝑆𝑖 = Different counts (with subtracted noise threshold value) of the slider segment

Figure 131 Nonlinear centroid response when slider segment width is lower than recommended

Note that even though a slider-segment-width value of less than finger diameter – 2 * air-gap provides a non-
linear centroid response, as Figure 131 shows; it may still be used in an end application where the linearity of

reported centroid versus actual finger position does not play a significant role. However, a minimum value of
slider-segment-width must be maintained, based on overlay thickness, such that, at any position on the
effective slider length, at least one slider-segment provides a Signal-to-noise ratio (SNR) of ≥ 5:1 (that is signal

greater than or equal to the finger threshold parameter) at that position. If the slider-segment width is too low,
a finger may not be able to couple enough capacitance, and therefore, none of the slider-segments will have a

5:1 SNR, resulting in a reported centroid value of 0xFFFF1 in PSoC™ Creator as Figure 132 shows, and 0x00002 in

ModusToolbox™.

1 The CAPSENSE™ Component in PSoC™ Creator reports a centroid of 0xFFFF when there is no finger detected on the slider, or when none of the slider segments reports a

difference count value greater than the Finger Threshold parameter.
2 The CAPSENSE™ middleware in ModusToolbox™ reports a centroid of 0x0000 when there is no finger detected on the slider, or when none of the slider segments reports a

difference count value greater than the Finger Threshold parameter.

0

20

40

60

80

100

120

0

20

40

60

80

100

C
e

n
tr

o
id

Si
gn

al

Finger Position

Signal0

Signal1

Signal2

Signal3

Signal4

Centroid

SLD
0

SLD
1

SLD
2

SLD
3

SLD
4

Application Note 173 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Figure 132 Incorrect centroid reported when slider-segment-width is too low

The minimum value of slider-segment width for certain overlay thickness values for an acrylic overlay are
provided in Table 31. For thickness values of acrylic overlays, which are not specified in Table 31, Figure 133

may be used to estimate the minimum slider-segment width. Very thin overlay or no overlay may cause a
nonlinear centroid response due to saturation of raw count or due to high finger capacitance; centroid position

may be detected before touching the slider. In these conditions, the CAPSENSE™ centroid algorithm will not be

able to correctly estimate the finger position on the slider using Equation 74. It is recommended to have the

overlay thickness for the CSD sensor as mentioned in Table 30.

Figure 133 Minimum slider-segment width w.r.t. overlay thickness for an acrylic overlay

If the slider-segment-width + 2 * air-gap is higher than the finger diameter value as required in Equation 73,
the centroid response will have flat-spots; that is, if the finger is moved towards the middle of any segment, the
reported centroid position will remain constant as Figure 134 shows. This is because, as Figure 135 shows,

when the finger is placed in the middle of a slider segment, it will add a valid signal only to that segment even if
the finger is moved a little towards adjacent segments.

0

50

100

150

200

250

300

0

5

10

15

20

25

30

35

40

SLD0 SLD1 SLD2 SLD3 SLD4

C
e

n
tr

o
id

Si
gn

al

Finger Position

Signal0

Signal1

Signal2

Signal3

Signal4

Finger Threshold

Centroid

0

2

4

6

8

10

0 1 2 3 4 5 6

M
im

im
u

m
 S

lid
e

r-
Se

gm
e

n
t

W
id

th

Acrylic Overlay Thickness (mm)

Application Note 174 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Figure 134 Flat-spots (nonresponsive centroid) when slider-segment width is higher than

recommended

12 mm

Noise Threshold

Finger Threshold

D
if
fe

re
n

c
e

 C
o

u
n

t

SLD0 SLD1 SLD2

G
N

D
/

S
H

IE
L

D

S
L

D
0

S
L

D
1

S
L

D
2

S
L

D
3

S
L

D
4

G
N

D
/

S
H

IE
L

D

9 mm

Figure 135 Signal on slider segments when slider-segment width is higher than recommended

Note that if the value of slider-segment-width + 2 * air-gap is higher than the finger diameter, it may be possible

to increase and adjust the sensitivity of all slider segments such that even if the finger is placed in the middle of
a slider segment, adjacent sensors report a difference count value equal to the noise threshold value (see

Figure 128); however, this will result in the hover effect – the slider may report a centroid position even if the

finger is hovering above the slider and not touching the slider.

7.4.4.2 Dummy segments at the ends of a slider

In a CAPSENSE™ design, when one segment is scanned, adjacent segments are connected to either ground or
to the driven- shield signal based on the option specified in the “Inactive sensor connection” parameter in the

CAPSENSE™ CSD Component. For a linear centroid response, the slider requires all the segments to have the
same sensitivity, that is, the increase in the raw count (signal) when a finger is placed on the slider segment

should be the same for all segments. To maintain a uniform signal level from all slider segments, it is
recommended that you physically connect the two segments at both ends of a slider to either ground or driven
shield signal. The connection to ground or to the driven-shield signal depends on the value specified in the

“Inactive sensor connection” parameter. Therefore, if your application requires an ‘n’ segment slider, it is

recommended that you create n + 2 physical segments, as Figure 127 shows.

0

20

40

60

80

100

120

0

20

40

60

80

100

120

C
e

n
tr

o
id

Si
gn

al

Finger Position

Signal0

Signal1

Signal2

Signal3

Signal4

CentroidSLD0 SLD1 SLD2 SLD3 SLD4

Application Note 175 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

If it is not possible to have two segments at both ends of a slider due to space constraints, you can implement
these segments in the top hatch fill, as Figure 136 shows. Also, if the total available space is still constrained,

the width of these segments may be kept lesser than the width of segments SLD0 through SLDn-1, or these
dummy segments may even be removed.

If the two segments at the both ends of a slider are connected to the top hatch fill, you should connect the top

hatch fill to the signal specified in the “Inactive sensor connection” parameter. If liquid tolerance is required for
the slider, the hatch fill around the slider, the last two segments, and the inactive slider segments should be
connected to the driven-shield signal. See the Effect of liquid droplets and liquid stream on a self-
capacitance sensor section for more details.

S
L

D
0

S
L

D
1

S
L

D
2

S
L

D
3

G
N

D
/

S
H

IE
L

D

S
L

D
n
-1

G
N

D
/

S
H

IE
L

D

Figure 136 Linear slider pattern when first and last segments are connected to top hatch fill

7.4.4.3 Deciding slider dimensions

Slider dimensions for a given design can be chosen based on following considerations:

a) Decide the required length of the slider (L) based on application requirements. This is same as the “effective

slider length” as Figure 127 shows.

b) Decide the height of the segment based on the available space on the board. Use the maximum allowed
segment height (15 mm) if the board space permits; if not, use a lesser height but ensure that the height is

greater than the minimum specified in Table 31.

c) The slider-segment width and the air gap between slider segments should be as recommended in Table 31.

The recommended slider-segment-width and air-gap for an average finger diameter of 9 mm is 8 mm and 0.5
mm respectively.

d) For a given slider length L, calculate the number of segments required by using the following formula:

Equation 75. Number of segments required for a slider

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 =
𝑠𝑙𝑖𝑑𝑒𝑟 𝑙𝑒𝑛𝑔𝑡ℎ

𝑠𝑙𝑖𝑑𝑒𝑟 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑤𝑖𝑑𝑡ℎ + 𝑎𝑖𝑟 𝑔𝑎𝑝
+ 1

Note that a minimum of two slider segments are required to implement a slider.

If the available number of CAPSENSE™ pins is slightly less than the number of segments calculated for a certain

application, you may increase the segment width to achieve the required slider length with the available

number of pins. For example, a 10.2-cm slider requires 13 segments. However, if only 10 pins are available, the
segment width may be increased to 10.6 cm. This will either result in a nonlinear response as Figure 134 shows,
or a hover effect; however, this layout may be used if the end application does not need a high linearity.

Note that the PCB length is higher than the required slider length as Figure 127 shows. PCB length can be
related to the slider length as shown in Equation 76.

Application Note 176 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Equation 76. Relationship between minimum PCB length and slider length

𝐏𝐂𝐁 𝐥𝐞𝐧𝐠𝐭𝐡 = 𝐒𝐥𝐢𝐝𝐞𝐫 𝐥𝐞𝐧𝐠𝐭𝐡 + 𝟑 ∗ 𝐬𝐥𝐢𝐝𝐞𝐫 𝐬𝐞𝐠𝐦𝐞𝐧𝐭 𝐰𝐢𝐝𝐭𝐡 + 𝟐 ∗ 𝐚𝐢𝐫 𝐠𝐚𝐩

If the available PCB area is less than that required per this equation, you can remove the dummy segments.

In this case, the minimum PCB length required will be as shown in Equation 77.

Equation 77. Relationship between minimum PCB length and slider length

𝐏𝐂𝐁 𝐥𝐞𝐧𝐠𝐭𝐡 = 𝐒𝐥𝐢𝐝𝐞𝐫 𝐥𝐞𝐧𝐠𝐭𝐡 + 𝐒𝐥𝐢𝐝𝐞𝐫 𝐬𝐞𝐠𝐦𝐞𝐧𝐭 𝐰𝐢𝐝𝐭𝐡

7.4.4.4 Routing slider segment trace

A slider has many segments, each of which is connected separately to the CAPSENSE™ input pin of the device.
Each segment is separately scanned and the centroid algorithm is applied finally on the signal values of all the

segments to calculate the centroid position. The SmartSense algorithm implements a specific tuning method
for sliders to avoid nonlinearity in the centroid that could occur due to the difference of CP in the segments.
However, the following layout conditions need to be met for the slider to work:

1. CP of any segment should always be within the supported range of CP as mentioned in the Component

datasheet.

2. CP of the slider segment should be as close as possible. However, in the practical scenario CP of each slider

segment might vary because of differences in trace routing for each segment. The maximum allowed

variation in the segment parasitic capacitance is 44% max CP of the slider segment for an 85% IDAC
calibration level. If the variation in CP is beyond this limit then it may cause a change in the sensitivity
among the slider segments leading to a non-linear slider response.

Implement the following layout design rules to meet a good slider design with linear response.

• Design the shape of all segments to be as uniform as possible.

• Ensure that the length and the width of the traces connecting the segments to the device are same for all

the segments if possible.

• Maintain the same air gap between the sensors or traces to ground plane or hatch fill.

7.4.4.5 Slider design with LEDs

In some applications, it may be required to display the finger position by driving LEDs. You can either place the
LEDs just above the slider segments or drill a hole in the middle of a slider segment for LED backlighting, as
Figure 137 shows. When a hole is drilled for placing an LED, the effective area of the slider segment reduces. To

achieve an SNR > 5:1, you need to have a slider segment with a width larger than the LED hole size. See Table

31 for the minimum slider width required to achieve an SNR > 5:1 for a given overlay thickness. Follow the

guidelines provided in the Crosstalk solutions section to route the LED traces.

S
L

D
0

S
L

D
1

S
L

D
2

S
L

D
3

G
N

D
/

S
H

IE
L

D

S
L

D
4

G
N

D
/

S
H

IE
L

D

Figure 137 Slider design with LED backlighting

http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd

Application Note 177 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7.4.5 Sensor and device placement

Follow these guidelines while placing the sensor and the device in your PCB design:

• Minimize the trace length from the device pins to the sensor pad.

• Mount series resistors within 10 mm of the device pins to reduce RF interference and provide ESD
protection. See Series resistors on CAPSENSE™ pins for details.

• Mount the device and the other components on the bottom layer of the PCB.

• Avoid connectors between the sensor and the device pins because connectors increase CP and noise pickup.

• Button to Button distance (edge to edge) must be greater than 8mm. If keys have less than 8mm between
them, there will be cross talk between the keys. Also, from a usability standpoint, it increases the risk of the

user touching two keys at the same time. Key to key distance must be greater than 8mm

• Spacing from a touch line to any metal should be greater than 5mm. This includes the metal chassis,
decorative chrome trim, screws, and so on.

• Isolate or provide physical separation between CAPSENSE™ components and their signals from noisy
subsystems such as transformers. A CAPSENSE™ system in general is sensitive to external noise.

7.4.6 Trace length and width

Use short and narrow PCB traces to minimize the parasitic capacitance of the sensor. The maximum
recommended trace length is 12 inches (300 mm) for a standard PCB and 2 inches (50 mm) for flex circuits. The

maximum recommended trace width is 7 mil (0.18 mm). You should surround the CAPSENSE™ traces with a

hatched ground or hatched shield with trace-to-hatch clearance of 10 mil to 20 mil (0.25 mm to 0.51 mm).

7.4.7 Trace routing

You should route the sensor traces on the bottom layer of the PCB, so that the finger does not interact with the

traces. Do not route traces directly under any sensor pad unless the trace is connected to that sensor.

Do not run capacitive sensing traces closer than 0.25 mm to switching signals or communication lines.

Increasing the distance between the sensing traces and other signals increases the noise immunity. If it is

necessary to cross communication lines with sensor pins, make sure that the intersection is at right angles, as
Figure 138 shows.

COM Lines

C
O

M
 L

in
e

s

COM Lines

COM Lines

S
e

n
s
o

r
L

in
e

s

S
e

n
s
o

r
L

in
e

s

S
e

n
s
o

rs

S
e

n
s
o

rs

PSoC

PSoC

PSoC

Bad

Bad

Good

Good

Figure 138 Routing of sensor and communication lines

Application Note 178 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

If, due to spacing constraints, sensor traces run in parallel with high-speed traces such as I2C communication
lines or Bluetooth® LE antenna traces, it is recommended to place a ground trace between the sensor trace and

the high-speed trace as shown in Figure 139. This guideline also applies to the cross talk caused by
CAPSENSE™ sensor trace with precision analog trace such as traces from temperature sensor to the

PSoC™ device. The thickness of the ground trace can be 7 mils and the spacing from sensor trace to ground
trace should be equal to minimum of 10 mils to reduce the CP of the CAPSENSE™ sensor.

PSoC

High Speed Switching Trace

Ground Trace to Reduce Cross
Coupling

CAPSENSE Sensor Traces

Switching Trace Running in Parallel with CAPSENSE Trace

Figure 139 Reducing cross talk between high-speed switching trace and CAPSENSE™ trace

If a ground trace cannot be placed in between the switching trace and the CAPSENSE™ trace, the 3W rule can be
followed to reduce the cross talk between the traces. The 3W rule states that “to reduce cross talk from

adjacent traces, a minimum spacing of two trace widths should be maintained from edge to edge” as shown in

Figure 140.

W W

W W W

3W

2W

Figure 140 3W trace spacing to minimize cross talk

• Do not run Tx and Rx lines parallel to each other. The trace routing should be separated as much as

possible.

• If the layout constraints require Tx and Rx run parallel for short distances, the space between Tx and Rx
should be greater than the distance between Tx and Rx inside the key (2 times the Tx-Rx key spacing is
preferred) or add ground between them.

• Keep as much clearance around Rx as possible to prevent noise on the touch keys. It is critical to follow this
guideline for spacing to power traces and LED lines (high speed switching, power). Ground should also

follow this rule, but it is less critical. Ground will provide noise protection but will reduce key sensitivity.

Application Note 179 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

• For a given set of sensors, the number of Rx lines must be less than or equal to Tx lines. Rx lines are
susceptible to noise, whereas Tx lines are relatively less susceptible.

7.4.8 Crosstalk solutions

A common backlighting technique for panels is an LED mounted under the sensor pad so that it is visible
through a hole in the middle of the sensor pad. When the LED is switched ON or OFF, voltage transitions on the
LED trace can create crosstalk in the capacitive sensor input, creating noisy sensor data. To prevent this
crosstalk, isolate CAPSENSE™ and the LED traces from one another as Trace routing section explains.

You can also reduce crosstalk by removing the rapid transitions in the LED drive voltage, by using a filter as
Figure 141 shows. Design the filter based on the required LED response speed.

VDDD

LED

CapacitorSeries
Resistor

PSoC

LED Pin

Sensor Pin

1 kΩ typ

0.1uF typ

Figure 141 Reducing crosstalk

A guard trace is a ground trace running close to or above/below a TX/Rx line of a mutual-capacitance button.

Guard traces can be used to protect sensor traces from noise if the layout does not allow for a ground hatch.

Similar to ground hatch, guard traces add parasitic capacitance and reduce button sensitivity. Guard traces are

usually needed on a case-by-case basis. Typical situations where guard traces have been used in the past

include:

• Reduce cross talk

• Protect from noise of high-speed lines (I2C, SPI, UART) and toggling LED traces.

• Border around the HMI or around an LCD

7.4.9 Vias

Use the minimum number of vias possible to route CAPSENSE™ signals, to minimize parasitic capacitance.
Place the vias on the edge of the sensor pad to reduce trace length, as Figure 142 shows.

Via at the Center of the

Sensor (Long Trace)

Via Near the Edge of the

Sensor (Short Trace)

Figure 142 Via placement on the sensor pad

Application Note 180 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7.4.10 Ground plane

When designing the ground plane, follow these guidelines:

• Ground surrounding the sensors should be in a hatch pattern. If you are using ground or driven-shield
planes in both top and bottom layers of the PCB, you should use a 25 percent hatching on the top layer (7-
mil line, 45-mil spacing), and 17 percent on the bottom layer (7-mil line, 70-mil spacing).

• For the other parts of the board not related to CAPSENSE™, solid ground should be present as much as
possible.

• The ground planes on different layers should be stitched together as much as possible, depending on the
PCB manufacturing costs. Higher amount of stitching results in lower ground inductance, and brings the

chip ground closer to the supply ground. This is important especially when there is high current sinking

through the ground, such as when the radio is operational.

• Every ground plane used for CAPSENSE™ should be star-connected to a central point, and this central point

should be the sole return path to the supply ground. Specifically:

− The hatch ground for all sensors must terminate at the central point

− The ground plane for CMOD, CINTX must terminate at the central point

− The ground plane for CSH_TANK must terminate at the central point

Figure 143 explains the star connection. The central point for different families is mentioned in Table 32.

Figure 143 Star connection for Ground

 Central point for star connection

Family Central point

PSoC™ 4000 VSS pin

PSoC™ 4100/4100M VSS pin

PSoC™ 4200/4200M/4200L/PSoC™ 4-S/PSoC™ 4100PS VSS pin

PSoC™ 4100-BL E-pad

PSoC™ 4200-BL E-pad

• All the ground planes for CAPSENSE™ should have an inductance of less than 0.2 nH from the central point.
To achieve this, place the CMOD, CINTx, and CSH_TANK capacitor pads close to the chip, and keep their ground
planes thick enough.

Sensor Ground

C
MOD

 Ground

C
SH_TANK

 Ground

Central Point Supply Ground

Application Note 181 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7.4.10.1 Using packages without E-pad

When not using the E-pad, the VSS pin should be the central point and the sole return path to the supply
ground. High-level layout diagrams of the top and bottom layers of a board when using a chip without the E-

pad are shown in Figure 144 and Figure 145.

Figure 144 PCB top layer layout using a chip without E-pad

Figure 145 PCB bottom layer layout using a chip without E-pad

Application Note 182 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7.4.10.2 Using packages with E-pad

If you are using packages with E-pad, the following guidelines must be followed:

• The E-pad must be the central point and the sole return path to the supply ground.

• The E-pad must have vias underneath to connect to the next layers for additional grounding. Generally
unfilled vias are used in a design for cost purposes, but silver-epoxy filled vias are recommended for the

best performance as they result in the lowest inductance in the ground path.

7.4.10.3 Using PSoC™ 4 Bluetooth® LE devices

In the case of PSoC™ 4 Bluetooth® LE devices in the QFN package (with E-pad):

• The general guidelines of ground plane (discussed above) apply.

• The E-pad usage guidelines of Using packages with E-pad apply.

• The VSSA pin should be connected to the E-pad below the chip itself.

• The vias underneath the E-pad are recommended to be 5 x 5 vias of 10-mil size.

High-level layout diagrams of the top and bottom layers of a board when using PSoC™ 4 Bluetooth® LE chips

are shown in Figure 146 and Figure 147.

Figure 146 PCB top layer layout with PSoC™ 4 Bluetooth® LE (with E-pad)

Application Note 183 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Figure 147 PCB bottom layer layout with PSoC™ 4 Bluetooth® LE (with E-pad)

7.4.11 Power supply layout recommendations

CAPSENSE™ is a high-sensitivity analog system. Therefore, a poor PCB layout introduces noise in high-
sensitivity sensor configurations such as proximity sensors and buttons with thick overlays (>1 mm). To achieve

low noise in a high-sensitivity CAPSENSE™ design, the PCB layout should have decoupling capacitors on the

power lines, as listed in Table 33.

 Decoupling capacitors on power lines

Power

line

Decoupling

capacitors

Corresponding
ground

terminal

Applicable device family

VDD 0.1 µF and 1 µF VSS PSoC™ 4000

VDDIO 0.1 µF and 1 µF VSS PSoC™ 4000, PSoC™ 6 MCU

VDDD

0.1 µF and 1 µF VSS PSoC™ 4100, PSoC™ 4200, PSoC™ 6 MCU

0.1 µF and 1 µF VSSD
PSoC™ 4100-BL, PSoC™ 4200-BL, PSoC™ 4200L, PSoC™ S-

series, PSoC™ 4100S Plus, PSoC™ 4100S Max

VDDA1

0.1 µF and 1 µF
(Battery powered

supply)

VSSA
PSoC™ 4100, PSoC™ 4200, PSoC™ 4100-BL, PSoC™ 4200-
BL, PSoC™ 4200L, PSoC™ 4S-Series, PSoC™ 4100S Plus,

PSoC™ 4100PS, PSoC™ 6 MCU

0.1µF and 10 µF
(Mains Powered

supply)

VSSA PSoC™ 4S-series, PSoC™ 4100S Plus, PSoC™ 4100PS

VDDR 0.1 µF and 1 µF VSSD
PSoC™ 4100-BL, PSoC™ 4200-BL, PSoC™ 6 MCU with

Bluetooth® LE Connectivity

1 The VDDA pin on PSoC™ 4 S-Series, PSoC™ 4100S Plus, and PSoC™ 4100PS family requires different values of bulk capacitor depending on the power supply source. If the device

is battery powered, it is recommended to use 0.1-µF and 1-µF capacitors in parallel and if the device is mains powered, it is recommended to use 0.1 µF and 10 µF in parallel.

This is to improve the power supply rejection ratio of reference generator (REFGEN) used in the CAPSENSE™ block.

Application Note 184 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Power

line

Decoupling

capacitors

Corresponding
ground

terminal

Applicable device family

VCCD
See device

datasheet

VSS
(PSoC™ 4000)
or VSSD (all

others)

All device families

The decoupling capacitors and CMOD capacitor must be placed as close to the chip as possible to keep ground
impedance and supply trace length as low as possible.

For further details on bypass capacitors, see the Power section in the Device datasheet.

7.4.12 Layout guidelines for liquid tolerance

As explained in the Liquid tolerance section, by implementing a shield electrode and a guard sensor, a liquid-
tolerant CAPSENSE™ system can be implemented. If there are multiple CSD blocks in the device, each CSD

block should have a dedicated shield electrode. This section shows how to implement a shield electrode and a

guard sensor.

7.4.12.1 Layout guidelines for shield electrode

The area of the shield electrode depends on the size of the liquid droplet and the area available on the board

for implementing the shield electrode. The shield electrode should surround the sensor pads and traces, and
spread no further than 1 cm from these features. Spreading the shield electrode beyond 1 cm has negligible
effect on system performance.

Also, having a large shield electrode may increase radiated emissions. If the board area is very large, the area
outside the 1-cm shield electrode should be left empty, as Figure 148 shows. The board design should focus on

reducing the coupling capacitance between the liquid droplet and ground. Thus, for improved liquid tolerance,

there should not be any hatch fill or a trace connected to ground in the top and bottom layers of the PCB.

When there is a grounded hatch fill or a trace then, when a liquid droplet falls on the touch surface, it may
cause sensor false triggers. Even if there is a shield electrode between the sensor and ground, the effect of the
shield electrode will be totally masked out and sensors may false trigger.

In some applications, there may not be sufficient area available on the PCB for shield electrode

implementation. In such cases, the shield electrode can spread less than 1 cm; the minimum area for shield
electrode can be the area remaining on the board after implementing the sensor.

In some applications, the capacitance of the shield electrode will be very high; you can reduce it with the

following techniques:

• Using multiple shield electrode instead of single shield electrode: If there is a single hatch pattern with a
higher CP, split the hatch pattern into multiple hatch patterns and drive it with the shield signal to decrease

the shield CP. This will also allow the use of a higher range of sense clock frequencies for the sensors which
will improve the sensitivity of the CAPSENSE™ system. In a complex layout design, this approach will make

trace routing simple.

• Connecting multiple shield pins to the same electrode: If splitting the shield electrode in the layout is not

feasible, connect multiple shield pins to the same electrode. This will make all the series resistance of the
sensor pins in parallel and reduce the effective time constant of the shield electrode, which will allow using
a higher range of sense clock frequencies for sensors, which will improve the sensitivity of the CAPSENSE™
system.

Application Note 185 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

PCB – Top Layer

BTN1 BTN2

1 cm Shield

Electrode

1 cm Shield

Electrode

Figure 148 Shield electrode placement when sensor trace Is routed in top and bottom layer

Follow these guidelines to implement the shield electrode in two-layer and four-layer PCBs:

Two-layer PCB:

• Top layer: Hatch fill with 7-mil trace and 45-mil grid (25 percent fill). Hatch fill should be connected to the

driven-shield signal.

• Bottom layer: Hatch fill with 7-mil trace and 70-mil grid (17 percent fill). Hatch fill should be connected to

the driven-shield signal.

Four (or more)-layer PCB:

• Top layer: Hatch fill with 7-mil trace and 45-mil grid (25 percent fill). Hatch fill should be connected to the

driven-shield signal.

• Layer-2: Hatch fill with 7-mil trace and 70-mil grid (17 percent fill). Hatch fill should be connected to the

driven-shield signal.

• Layer-3: VDD Plane

• Bottom layer: Hatch fill with 7-mil trace and 70-mil grid (17 percent fill). Hatch fill should be connected to
ground.

The recommended air gap between the sensor and the shield electrode is 1 mm.

Application Note 186 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7.4.12.2 Layout guidelines for guard sensor

As explained in the Guard sensor section, the guard sensor is a copper trace that surrounds all sensors, as
Figure 149 shows.

BTN1 BTN2 BTN3 Shield Electrode

Guard Sensor

Button Sensor

S
L

D
0

S
L

D
1

S
L

D
2

S
L

D
3

S
L

D
4

S
H

IE
L

D

S
H

IE
L

D

Figure 149 PCB layout with shield electrode and guard sensor

The guard sensor should be triggered only when there is a liquid stream on the touch surface. Ensure that the

shield electrode pattern surrounds the guard sensor to prevent it from turning on due to liquid droplets. The

guard sensor should be placed such that it meets the following conditions:

• It should be the first sensor to turn on when there is a liquid stream on the touch surface. To accomplish
this, the guard sensor is usually placed such that it surrounds all sensors.

• It should not be accidentally touched while pressing a button or slider sensor. Otherwise, the button
sensors and slider sensor scanning will be disabled and the CAPSENSE™ system will become nonoperational

until the guard sensor is turned off. To ensure the guard sensor is not accidentally triggered, place the guard
sensor at a distance greater than 1 cm from the sensors.

Follow these guidelines to implement the guard sensor:

• The guard sensor should be in the shape of a rectangle with curved edges and should surround all the
sensors.

• The recommended thickness for a guard sensor is 2 mm.

• The recommended clearance between the guard sensor and the shield electrode is 1 mm.

If there is no space on the PCB for implementing a guard sensor, the guard sensor functionality can be
implemented in the firmware. For example, you can use the ON/OFF status of different sensors to detect a

liquid stream depending on the use case data.

The following conditions can be used to detect a liquid stream on the touch surface:

• When there is a liquid stream, more than one button sensor will be active at a time. If your design does not

require multi-touch sensing, you can detect this and reject the sensor status of all the button sensors to
prevent false triggering.

• In a slider, if the slider segments which are turned ON are not adjacent segments, you can reset the slider
segments status or reject the slider centroid value that is calculated.

Application Note 187 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

• A firmware algorithm to detect the false touch due to water drop from the use case data can be made to
improve the false touch rejection capability sensors.

7.4.12.3 Liquid tolerance with ground ring

In some applications, it is required to have a ground ring (solid trace or a hatch fill) around the periphery of the
board for improved ESD and EMI/EMC performance, as shown in Figure 150. Having a ground ring around the
board may result in sensor false triggers when liquid droplets fall in between the sensor and the ground sensor.
Therefore, it is recommended not to have any ground in the top layer. If the design must have a ground ring in

the top layer, use a ground ring with the minimum thickness (8 mils).

Hatch Pattern

Connected to Shield

Button Sensor

Ground Ring

for Improved

EMI/EMC

GUARD

BTN1 BTN2 BTN3

Figure 150 CAPSENSE™ design with ground ring for improved ESD and EMI/EMC performance

7.4.13 Schematic rule checklist

Table 34 provides the checklist to verify your CAPSENSE™ schematic.

 Schematic Rule Checklist

No. Category Recommendations/Remarks

1 CMOD 2.2 nF. See Table 35 for pin selection.

2 CSH_TANK

10 nF if shield electrode is being used, NA otherwise. See Driven-shield

signal and shield electrode and CAPSENSE™ CSD shielding for details on

shield electrode and use of CSH_TANK respectively.

See Table 35 for pin selection.

3 CINTA/CINTB 470 pF. See Table 35 for pin selection.

3
Series resistance on

input lines

560 Ω for Self-capacitance and 2 kΩ for mutual-capacitance. See Series

resistors on CAPSENSE™ pins for details.

4
Sensor pin

selection

If possible, avoid pins that are close to the GPIOs carrying
switching/communication signals. Physically separate DC loads such as LEDs
and I2C pins from the CAPSENSE™ pins by a full port wherever possible. See

Sensor pin selection section for more details.

5
GPIO Source/Sink

Current

Ensure that the total sink current through GPIOs is not greater than 40 mA

when the CAPSENSE™ block is scanning the sensors.

Application Note 188 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7.4.13.1 External capacitors pin selection

As explained in the CAPSENSE™ fundamentals section, CAPSENSE™ require external capacitors - CMOD (CSD
sensing method), CTANK (Only when Shield is implemented), and CINTX (CSX sensing method) for reliable

operation. Starting from PSoC™ Creator 3.3 SP2, the number of pins that can support CMOD and CSH_TANK is
increased to improve design flexibility. Table 35 lists the recommended pins for CMOD, CINTX and CSH_TANK

capacitors for PSoC™ Creator 3.3 SP2 or later versions.

Note: For PSoC™ 4100/PSoC™ 4200, if a pin other than P4[2] is selected for CMOD, P4[2] will not be

available for any other function. For example, if you try routing CMOD to P2[0] in PSoC™ Creator for a

PSoC™ 4200 device, it uses both P2[0] and P4[2].

 Recommended pins for external capacitors

Device
CMOD (or CMOD1 for Fifth-

Generation CAPSENSE™)

CSH_TANK (or CMOD2 for Fifth-

Generation CAPSENSE™)

PSoC™ 4000 P0[4] P0[2]

PSoC™ 4100/PSoC™ 4200 P4[2] P4[3]

PSoC™ 4200M/ PSoC™ 4200L
CSD0: P4[2] CSD0: P4[3]

CSD1: P5[0] CSD1: P5[1]

PSoC™ 4 Bluetooth® LE P4[0] P4[1]

PSoC™ 6 MCU P7[1] P7[2]

PSoC™ 4S-Series, PSoC™ 4100S Plus P4[2] P4[3]

PSoC™ 4100PS P5[2] P5[3]

PSoC™ 4100S Max
Channel0: P4[0] Channel0: P4[1]

Channel1: P7[0] Channel1: P7[1]

 Supported pins for external capacitors

Device
CMOD (or CMOD1 for
fifth-generation

CAPSENSE™)

CSH_TANK (or CMOD2 for
fifth-generation

CAPSENSE™)

CINTA CINTB

PSoC™ 4000
Port0[0:7], Port1 [0:7]

P2[0]

Port0 [0:7], Port1 [0:7]

P2[0]
P0[4] P0[2]

PSoC™ 4100

Port0 [0:7], Port1 [0:7]
Port2 [0:7], Port3 [0:7]

P4[2]

Port0 [0:7], Port1 [0:7]
Port2 [0:7], Port3 [0:7]

P4[3]

Not supported Not supported

PSoC™ 4200

Port0 [0:7], Port1 [0:7]

Port2 [0:7], Port3 [0:7]

P4[2]

Port0 [0:7], Port1 [0:7],

Port2 [0:7], Port3 [0:7]

P4[3]

Port0 [0:7], Port1
[0:7]
Port2 [0:7], Port3

[0:7]

Port0 [0:7], Port1
[0:7]
Port2 [0:7], Port3

[0:7]

PSoC™ 4200M

CSD0:

Port0 [0:7], Port1 [0:7]
Port2 [0:7], Port3 [0:7]

Port4 [0:6], Port6 [0:5]

Port7 [0:1]

CSD0:

Port0 [0:7], Port1 [0:7]
Port2 [0:7], Port3 [0:7],

Port4 [0:6], Port6 [0:5]

Port7 [0:1]

CSD0: P4[2] CSD0: P4[3]

http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide

Application Note 189 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Device
CMOD (or CMOD1 for
fifth-generation

CAPSENSE™)

CSH_TANK (or CMOD2 for
fifth-generation

CAPSENSE™)

CINTA CINTB

CSD1: Not supported CSD1: Not supported
CSD1: Not

supported

CSD1: Not

supported

PSoC™ 4200L

CSD0:

Port0 [0:7], Port1 [0:7]
Port2 [0:7], Port3 [0:7]

Port4 [0:6], Port6 [0:5]

Port7 [0:7], Port10

[0:7], Port11 [0:7]

CSD0:

Port0 [0:7], Port1 [0:7]
Port2 [0:7], Port3 [0:7]

Port4 [0:6], Port6 [0:5]

Port7 [0:7], Port10 [0:7]

Port11 [0:7]

CSD0: P4[2] CSD0: P4[3]

CSD1:

Port5 [0:7], Port8 [0:7]

Port9 [0:7]

CSD1:

Port5 [0:7], Port8 [0:7]

Port9 [0:7]

CSD1: P5[0] CSD1: P5[1]

PSoC™ 4

Bluetooth® LE

Port0 [0:7], Port1 [0:7]

Port2 [0:7], Port3 [0:7]
Port4 [0:1], Port5 [0:1]

Port6 [0:1]

Port0 [0:7], Port1 [0:7]

Port2 [0:7], Port3 [0:7]
Port4 [0:1], Port5 [0:1]

Port6 [0:1]

P4[0] P4[1]

PSoC™ 6 MCU
P7[1] or P7[2] or

P7[7]
P7[1] or P7[2] or P7[7] P7[1] P7[2]

PSoC™ 4S-
Series,

PSoC™ 4100S

Plus

P4[2], P4[3], P4[1] P4[2], P4[3], P4[1] P4[2] P4[3]

PSoC™ 4100PS P5[0], P5[2], P5[3] P5[0], P5[2], P5[3] P5[2] P5[3]

PSoC™ 4100S

Max

Channel0: P4[0], P4[2] Channel0: P4[1], P4[3]
Not applicable Not applicable

Channel1: P7[0], P5[1] Channel1: P7[1], P5[2]

7.4.13.2 Sensor pin selection

As explained in CAPSENSE™ fundamentals, PSoC™ supports CSD and CSX capacitive sensing methods. Each
CSD sensor requires a single sensor pin and CSX sensor will require two sensor pins for Tx and Rx electrode in
addition to the required external capacitors for each sensing technique.

The selection of the sensor pins should be in a way such that the CAPSENSE™ sensor traces and communication
or other toggling GPIO traces are isolated by proper port/pin assignment. The following are some

recommended guidelines:

• Isolate switching signals, such as PWM, I2C communication lines, and LEDs from the sensor and sensor

traces. Place them at least 4 mm apart and fill a hatched ground between the CAPSENSE™ traces and the
switching signals to avoid crosstalk.

• Distribute the placement of DC loads on different ports to reduce the noise in CAPSENSE™. It is
recommended to have digital I/Os spread on different ports rather than concentrating in a single port.

• While the CAPSENSE™ block is scanning the sensor, limit the total source or sink current through GPIOs to

less than 40 mA while the CAPSENSE™ block is scanning the sensor. Sinking a current greater than 40 mA

while the CAPSENSE™ sensor is scanning may result in excessive noise in the sensor raw count.

Application Note 190 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

• For a PSoC™ 4 device it is recommended to place all the digital DC loads like LEDs, I2C/UART
communication pins on the port powered by only VSSD; see the Device datasheet for determining the ports

that are powered by VSSD. Placing DC loads on ports powered by VSSA will shift the VSSA up. Since
CAPSENSE™ is powered by VSSA, it will affect its performance.

• For PSoC™ 6 family of devices:

− Table 37 lists the ports that support CAPSENSE™, selecting ports 5, 6, 7, and 8 for CAPSENSE™ ensures

lesser noise.

− It is recommended to place all digital switching pins such as LEDs, I2C, UART, SPI, SMIF communication

pins on the ports that are powered by a different power supply domain which is not shared with the
CAPSENSE™ ports. Table 38 lists the ports, their supply domains, and recommendations for using these
ports with CAPSENSE™. For more details, see the Errata section of the Device datasheet. A deviation

from these guidelines might cause a noise due to level shift in raw count. For more details, see Raw

counts show a level-shift or increased noise when GPIOs are toggled. To isolate the supply domains

further, it is better to externally isolate them using ferrite beads as shown in Figure 152.

 CAPSENSE™ capable ports in PSoC™ 6 devices

Device CAPSENSE™ capable ports

CY8C62x6, CY8C62x7 P0, P1, P2, P4, P5, P6, P7, P8, P9, P10, P11

CY8C63x6, CY8C63x7 P0, P1, P2, P4, P5, P6, P7, P8, P9, P10, P11

CY8C62x5 P7.0 to P7.7, P8.0 to P8.3, P9.0 to P9.3

 Recommendations of port usage with CAPSENSE™ for PSoC™ 6 device

Ports Supply domain
Recommended for

CAPSENSE™

Recommendations for GPIOs if used

for communication, LEDs, and other
high frequency functionality with

CAPSENSE™

P0 VBACKUP No* Switching frequency < 8MHz

P1 VDDD No* Switching frequency < 1MHz, SLOW

Slew Rate

P2, P3, P4 VDDIO2 No* Switching frequency < 25MHz

P5, P6, P7, P8 VDDIO1 Yes Not recommended

P9, P10 VDDIOA No* Switching frequency < 1MHz, SLOW

Slew Rate

P11, P12, P13 VDDIO0 No* Switching frequency < 80MHz

P14 VDDUSB No* NA

Note: * If you need additional CAPSENSE™ pins and if you must use GPIOs in ports P1, P9, and P10 as Tx
electrode for CSX sensor, restrict the Tx clock frequency within 1 MHz and use SLOW slew rate.
Figure 151 shows an example on how to select the Slew Rate of the GPIO using the Device
configurator in the ModusToolbox™ project. Note that using the ports other than the

recommended ports for CAPSENSE™ might cause higher noise in raw count.

https://www.cypress.com/documentation/datasheets/psoc-6-mcu-cy8c62x6-cy8c62x7-datasheet
https://www.cypress.com/documentation/datasheets/psoc-6-mcu-psoc-63-ble-datasheet-programmable-system-chip-psoc?source=search&cat=technical_documents
https://www.cypress.com/documentation/datasheets/psoc-6-mcu-cy8c62x5-datasheet-preliminary?source=search&cat=technical_documents
https://www.cypress.com/file/492971/download
https://www.cypress.com/file/492971/download

Application Note 191 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Figure 151 Selecting slew rate for GPIOs

Figure 152 Externally isolated supply domains

Application Note 192 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7.4.14 Layout rule checklist

Table 39 provides the checklist to help verify your layout design.

 Layout rule checklist

No. Category
Minimum

value
Maximum value Recommendations / Remarks

1 Button

Shape N/A N/A
Circle or rectangular with curved

edges

Size 5 mm 15 mm 10 mm

Clearance to

ground hatch
0.5 mm 2 mm

Should be equal to overlay

thickness

2 Slider

Width of

segment
1.5 mm 8 mm 8 mm

Clearance
between

segments

0.5 mm 2 mm 0.5 mm

Height of

segment
7 mm 15 mm 12 mm

3 Overlay

Type N/A N/A

Material with high relative

permittivity (except conductors)

Remove any air gap between

sensor board and overlay / front

panel of the casing.

Thickness for

buttons
N/A 5 mm

Thickness for

sliders
N/A 5 mm

Thickness for

touchpads

N/A 0.5 mm

4 Sensor traces

Width N/A 7 mil
Use the minimum width possible
with the PCB technology that you

use.

Length N/A

300 mm for a
standard (FR4)

PCB

50 mm for flex

PCB

Keep as low as possible.

Clearance to

ground and

other traces

0.25 mm N/A

Use maximum clearance while

keeping the trace length as low as

possible.

Routing N/A N/A

Route on the opposite side of the

sensor layer. Isolate from other

traces. If any non- CAPSENSE™
trace crosses the CAPSENSE™

Application Note 193 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

No. Category
Minimum

value
Maximum value Recommendations / Remarks

trace, ensure that intersection is

orthogonal. Do not use sharp turns.

5 Via
Number of vias 1 2

At least one via is required to route
the traces on the opposite side of

the sensor layer.

Hole size N/A N/A 10 mil

6 Ground
Hatch fill

percentage
N/A N/A

Use hatch ground to reduce
parasitic capacitance. Typical

hatching:

25% on the top layer (7-mil line, 45-

mil spacing)

17% on the bottom layer (7-mil

line, 70-mil spacing)

7 Series resistor Placement N/A N/A Place the resistor within 10 mm of

the PSoC™ pin.

See Figure 153 for an example
placement of series resistance on

board.

8 Shield electrode Spread N/A 1 cm If you have PCB space, use 1-cm

spread.

9 Guard sensor

(for water

tolerance)

Shape N/A N/A Rectangle with curved edges

Thickness N/A N/A Recommended thickness of guard
trace is 2 mm and distance of guard

trace to shield electrode is 1 mm.

10 CMOD Placement N/A N/A Place close to the PSoC™ pin. See
Figure 153 for an example

placement of CMOD on PCB.

11 CSH_TANK Placement N/A N/A

Place close to the PSoC™ pin. See
Figure 153 for an example

placement of CSH_TANK on board.

12 CINTA Placement N/A N/A
Place close to the PSoC™ pin. See
Figure 153 for an example

placement of CINTA on the PCB.

13 CINTB Placement N/A N/A
Place close to the PSoC™ pin. See
Figure 153 for an example

placement of CINTA on the PCB.

Application Note 194 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

CINTx

CMOD

CSH_TANK

560E Resistor

Figure 153 Example placement for CMOD, CINTx, CSH_TANK, and series resistance on input lines in

PSoC™ 4200M device

7.5 Noise in CAPSENSE™ system

7.5.1 Finger injected noise

If the power supply design of the system is poor, the power and ground supplies of a device fluctuates in

voltage relative to the finger ground (earth ground) in a common mode fashion. This type of noise is called
common mode noise. Figure 154 illustrates the common mode noise, where both the 5V and the 0V output

leads of the power supply remain 5V from each other, but they move up and down together, in a “common
mode” manner.

This is not a problem, until a finger touch occurs on the button. A finger touch on the button introduces a

(capacitive) path to the same earth ground and it will create a path for charge flow, which is equivalent to a

noise signal injected exactly at the finger touch location. This injected noise caused by the common mode noise

in power supply is called finger injected noise. It is observed only during the finger touch on the button in AC
powered application and it doesn’t occur in battery powered application.

Figure 154 Common mode noise in the power supply

Note that when the complete system powered by AC supply is held in hand of the user, the entire system will be
grounded to earth sufficiently and no significant “common-mode” noise would flow through the touching

finger to earth. However, if the system is connected to the power supply and placed on a desk, a touch on the
button, can introduce a problematic discharge path to ground.

Application Note 195 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7.5.1.1 Recommendations to reduce the finger injected noise

The finger injected noise could be reduced by properly following the layout and schematics guidelines
described in this section. The general recommendations to reduce the finger injected noise is explained below.

a) Fill the PCB board around the button with hatched pattern and connected it to device ground. Follow the
recommendations as mentioned in the section Ground plane.

Figure 155 shows the impact of ground on the finger injected noise for mutual capacitance button and it is
also true for CSD sensing technique. In the left figure, the system doesn’t have the hatched ground around
the button and most of the injected noise through the finger pass to the Rx pin of the device through the
Capacitance formed between the finger and Rx electrode. In the right figure, the system has the hatched

ground around the button and thus the finger injected noise is having an alternate path to flow which results

in the reduction of the noise reaching to the device Rx pin.

Figure 155 Effect of ground on finger injected noise

b) Better power supply design of the system could easily eliminate the common mode noise, which will in
turn reduce the finger injected noise.

c) Use software technique that are available in the CAPSENSE™ component to combat the finger injected
noise such as selecting optimal sensing clock frequency and Multi frequency scanning, and so on.

d) Increase the overlay thickness will reduce the finger injected noise as it will decrease the capacitance

formed between the finger and Rx electrode.

Application Note 196 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7.5.2 VDDA noise

The noise in the system due to unwanted voltage ripples in the VDD supply is called VDDA noise.

7.5.2.1 Recommendations to reduce the VDDA noise

The VDDA noise could be reduced by properly following the layout and schematics guidelines in this chapter.
The general recommendations to reduce the VDDA noise as follows:

a) Use clean power supply and have VDD ripples below the limits mentioned in the device datasheet.

b) Use filters or LDO regulator in the VDD power lines.

c) Use decoupling capacitors on the power supply pins to reduce the conducted noise from the power supply.

d) To reduce high-frequency noise, place a ferrite bead around power supply or communication lines.

e) Selecting the proper supply configuration as mentioned in the Power section in the Device datasheet and
using the internal regulator to the device might help in reducing the VDDA noise.

7.5.3 External noise

Any noise that is injected into to the system through the routing trace lines like ESD, EMI, conducted noise are
coming into the category of external noise. The recommended guidelines for reducing the impact of the
external noise are discussed in this section.

7.5.3.1 ESD protection

The nonconductive overlay material used in CAPSENSE™ provides inherent protection against ESD. Table 40
lists the thickness of various overlay materials, required to protect the CAPSENSE™ sensors from a 12-kV

discharge (according to the IEC 61000 - 4 - 2 specification).

 Overlay thickness for ESD protection

Material Breakdown voltage (V/mm)
Minimum overlay thickness for

protection against 12 kV ESD (mm)

Air 1200 – 2800 10

Wood – dry 3900 3

Glass – common 7900 1.5

Glass – Borosilicate (Pyrex®) 13,000 0.9

PMMA Plastic (Plexiglas®) 13,000 0.9

ABS 16,000 0.8

Polycarbonate (Lexan®) 16,000 0.8

Formica 18,000 0.7

FR-4 28,000 0.4

PET Film (Mylar®) 280,000 0.04

Polyimide Film (Kapton®) 290,000 0.04

If the overlay material does not provide sufficient protection (for example, ESD from other directions), you can
apply other ESD counter-measures, in the following order: Prevent, Redirect, and ESD protection devices.

Application Note 197 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7.5.3.1.1 Preventing ESD discharge

Preventing the ESD discharge from reaching the PSoC™ is the best countermeasure you can take. Make sure
that all paths to PSoC™ have a breakdown voltage greater than the maximum ESD voltage possible at the

surface of the equipment. You should also maintain an appropriate distance between the PSoC™ and possible
ESD sources. In the example illustrated in Figure 156, if L1 and L2 are greater than 10 mm, the system can
withstand a 12-kV ESD.

Air-Filled Space

PCB
PSoC

N
o

n
-C

o
n

d
u

ct
in

g
M

at
e

ri
al

ESD Event

Mechanical Structure

Exposed
Mounting
Hardware

ESD Event

L2

L1

Figure 156 ESD paths

If it is not possible to maintain adequate distance, place a protective layer of nonconductive material with a

high breakdown voltage between the possible ESD source and PSoC™. One layer of 5-mil thick Kapton® tape

can withstand 18 kV. See Table 40 for other material dielectric strengths.

7.5.3.1.2 Redirect

If your product is densely packed, preventing the discharge event may not be possible. In such cases, you can
protect the PSoC™ from ESD by redirecting the ESD. A standard practice is to place a ground ring on the
perimeter of the circuit board, as Figure 157 shows. The ground ring should connect to the chassis ground.

Using a hatched ground plane around the button or slider sensor can also redirect the ESD event away from the
sensor and PSoC™.

PSoC™

Ground with conductive
material on the perimeter to
redirect the discharge

Figure 157 Ground ring

Application Note 198 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7.5.3.1.3 ESD protection devices

You can use ESD protection devices on vulnerable traces. Select ESD protection devices with a low input
capacitance to avoid reduction in CAPSENSE™ sensitivity. Table 41 lists the recommended ESD protection

devices.

 ESD protection devices

ESD protection device
Input

capacitance

Leakage

current

Contact
maximum

ESD limit

Air discharge maximum ESD

limit Manufacturer Part number

Littelfuse SP723 5 pF 2 nA 8 kV 15 kV

Vishay VBUS05L1-

DD1

0.3 pF 0.1 µA ±15 kV ±16 kV

NXP NUP1301 0.75 pF 30 nA 8 kV 15 kV

7.5.3.2 Electromagnetic compatibility (EMC) considerations

EMC is related to the generation, transmission, and reception of electromagnetic energy that can affect the
working of an electronic system. Electronic devices are required to comply with specific limits for emitted

energy and susceptibility to external events. Several regulatory bodies worldwide set regional regulations to
help ensure that electronic devices do not interfere with each other.

CMOS analog and digital circuits have very high input impedance. As a result, they are sensitive to external

electric fields. Therefore, you should take adequate precautions to ensure their proper operation in the

presence of radiated and conducted noise.

Computing devices are regulated in the US by the FCC under Part 15, Sub-Part B for unintentional radiators.
The standards for Europe and the rest of the world are adapted from CENELEC. These are covered under CISPR
standards (dual-labeled as ENxxxx standards) for emissions, and under IEC standards (also dual labeled as

ENxxxx standards) for immunity and safety concerns.

The general emission specification is EN55022 for computing devices. This standard cover both radiated and
conducted emissions. Medical devices in the US are not regulated by the FCC, but rather are regulated by FDA

rules, which include requirements of EN55011, the European norm for medical devices. Devices that include
motor controls are covered under EN55014 and lighting devices are covered under EN50015.

These specifications have essentially similar performance limitations for radiated and conducted emissions.
Radiated and conducted immunity (susceptibility) performance requirements are specified by several sections

of EN61000-4. Line voltage transients, ESD and some safety issues are also covered in this standard.

Application Note 199 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7.5.3.2.1 Radiated interference and emissions

While PSoC™ 4 and PRoC Bluetooth® LE offer a robust CAPSENSE™ performance, radiated electrical energy can
influence system measurements and potentially influence the operation of the CAPSENSE™ processor core.

Interference enters the CAPSENSE™ device at the PCB level through sensor traces and through other digital and
analog inputs. CAPSENSE™ devices can also contribute to electromagnetic compatibility (EMC) issues in the
form of radiated emissions.

Use the following techniques to minimize the radiated interference and emissions.

Hardware considerations

Ground plane

In general, proper ground plane on the PCB reduces both RF emissions and interference. However, solid
grounds near CAPSENSE™ sensors or traces connecting these sensors to PSoC™ pins increase the parasitic

capacitance of the sensors. It is thus recommended to use hatched ground planes surrounding the sensor and
on the bottom layer of the PCBs, below the sensors, as explained in the Ground section in PCB layout . Solid
ground may be used below the device and other circuitry on the PCB which is farther from CAPSENSE™ sensors

and traces. A solid ground flood is not recommended within 1 cm of CAPSENSE™ sensors or traces.

Series resistors on CAPSENSE™ pins

Every CAPSENSE™ controller pin has some parasitic capacitance (CP) associated with it. As Figure 158 shows,

adding an external resistor forms a low-pass RC filter that attenuates the RF noise amplitude coupled to the
pin. This resistance also forms a low-pass filter with the parasitic capacitance of the CAPSENSE™ sensor that
significantly reduces the RF emissions.

PSoC

CAPSENSE
Sensor

External Series
Resistor

Pin Capacitance

Figure 158 RC filter

Series resistors should be placed close to the device pins so that the radiated noise picked by the traces gets

filtered at the input of the device. Thus, it is recommended to place series resistors within 10 mm of the pins.

For CAPSENSE™ designs using copper on PCBs, the recommended series resistance for CAPSENSE™ input lines

is 560 Ω. Adding resistance increases the time constant of the switched-capacitor circuit that converts CP into

an equivalent resistor; see GPIO cell capacitance to current converter. If the series resistance value is larger
than 560 Ω, the slower time constant of the switching circuit suppresses the emissions and interference, but
limits the amount of charge that can transfer. This lowers the signal level, which in turn lowers the SNR.

Smaller values are better in terms of SNR, but are less effective at blocking RF.

Application Note 200 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Series resistors on digital communication lines

Communication lines, such as I2C and SPI, also benefit from series resistance; 330 Ω is the recommended value
for series resistance on communication lines. Communication lines have long traces that act as antennae
similar to the CAPSENSE™ traces. The recommended pull-up resistor value for I2C communication lines is
4.7 kΩ. If more than 330 Ω is placed in series on these lines, the VIL and VIH voltage levels may fall out of

specifications. 330 Ω will not affect I2C operation as the VIL level still remains within the I2C specification limit of
0.3 VDD when PSoC™ outputs a LOW.

CAPSENSE
Controller

Vdd Vdd

SCL

SDA

4.7K Ohm

4.7K Ohm

330 Ohm

330 Ohm

Figure 159 Series resistors on communication lines

Trace length

Long traces can pick up more noise than short traces. Long traces also add to CP. Minimize the trace length
whenever possible.

Current loop area

Another important layout consideration is to minimize the return path for currents. This is important as the

current flows in loops. Unless there is a proper return path for high-speed signals, the return current will flow
through a longer return path forming a larger loop, thus leading to increased emissions and interference.

If you isolate the CAPSENSE™ ground hatch and the ground fill around the device, the sensor-switching current

may take a longer return path, as Figure 160 shows. As the CAPSENSE™ sensors are switched at a high

frequency, the return current may cause serious EMC issues. Therefore, you should use a single ground hatch,
as Figure 161 shows.

CapSense
Sensor

PSoC

Ground Fill 2Ground Fill 1

Isolated
Ground Fills

Other
Circuitry

Current Path
to Sensor

Return
Path

PCB

Figure 160 Improper current loop layout

Application Note 201 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

CapSense
Sensor

PSoC

Single Ground
Fill

Current Path
to Sensor

Return Path

PCB
Other

Circuitry

Figure 161 Proper current loop layout

RF source location

If your system has a circuit that generates RF noise, such as a switched-mode power supply (SMPS) or an
inverter, you should place these circuits away from the CAPSENSE™ interface. You should also shield such

circuits to reduce the emitted RF. Figure 162 shows an example of separating the RF noise source from the

CAPSENSE™ interface.

Computer Monitor

SMPS/LCD Inverter

CAPSENSE interface

Computer Monitor

SMPS/LCD Inverter

CAPSENSE Interface

Not Recommended Recommended

Figure 162 Separating noise sources

Firmware considerations

The following parameters affect Radiated Emissions (RE) in a CAPSENSE™ system:

• Device operating voltage

• Device operation frequency

• Sensor switching frequency

• Shield signal

• Sensor scan time

• Sense Clock Source Inactive sensor termination

The following sections explain the effect of each parameter.

Application Note 202 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Device operating voltage

The emission is directly proportional to the voltage levels at which switching happens. Reducing the operating
voltage helps to reduce the emissions as the amplitude of the switching signal at any output pin directly
depends on the operating voltage of the device.

PSoC™ allows you to operate at lower operating voltages, thereby reducing the emissions. Figure 163 and
Figure 164 show the impact of operating voltage on radiated emissions. Because IMO = 24 MHz, there is a spike
at 24 MHz and the other spikes are caused by different hardware and firmware operations of the device.

Figure 163 Effect of VDD on radiated emissions (150 kHz – 30 MHz)

Figure 164 Effect of VDD on radiated emissions (30 MHz – 1 GHz)

Note: Frequency axis is in log scale.

Device operating frequency

Reducing the system clock frequency (IMO frequency) reduces radiated emissions. However, reducing the IMO
frequency may not feasible in all applications because the IMO frequency impacts the CPU clock and all other
system timings. Choose a suitable IMO frequency based on your application.

Spike at 24 MHz

Application Note 203 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Sensor-switching frequency

Reducing the sensor-switching frequency (see Sense clock) also helps to reduce radiated emissions. See
Figure 165 and Figure 166. Because IMO = 24 MHz, there is a spike at 24 MHz and the other spikes are caused
by different hardware and firmware operations of the device.

Figure 165 Effect of sensor-switching frequency on radiated emissions (150 kHz – 30 MHz)

Figure 166 Effect of sensor-switching frequency on radiated emissions (30 MHz – 1 GHz)

Note: Frequency axis is in log scale.

Pseudo random sense clock

The PSoC™ 4 device supports PRS-based sense clock generation. A PRS is used instead of a fixed clock source to

attenuate emitted noise on the CAPSENSE™ pins by reducing the amount of EMI created by a fixed-frequency

source and to increase EMI immunity from other sources and their harmonics.

Spike at 24 MHz

Application Note 204 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Spread spectrum sense clock

In addition to the PRS-based clock generation, the PSoC™ 4 S-Series, PSoC™ 4100S Plus, PSoC™ 4100PS, and
PSoC™ 6 MCU family of devices supports a unique feature called spread spectrum sense clock generation, in
which the sense clock frequency is spread over a desired range. This method will help to reduce the peaks and
spread out the emissions over a range of frequencies. The spread spectrum clock can be enabled by selecting

the Sense Clock Source as SSCn. The range of frequency spread is decided by the length of the register. For
more details on the spread spectrum clock generation in the PSoC™ 4 S-Series, PSoC™ 4100S Plus, and
PSoC™ 4100PS family, see the Spread spectrum clock section in the CAPSENSE™ chapter of the respective
device Technical reference manual.

Figure 167 Sense clock sources in PSoC™ 4 S-Series, PSoC™ 4100S Plus, and PSoC™ 4100PS family

Shield signal

Enabling the shield signal (see Driven-shield signal and shield electrode) on the hatch pattern increases the
radiated emissions. Enable the driven-shield signal only for liquid-tolerant, proximity-sensing, or high-

parasitic-capacitance designs. Also, if the shield must be used, ensure that the shield electrode area is limited

to a width of 1 cm from the sensors, as Figure 148 shows.

Figure 168 and Figure 169 show the impact of enabling the driven-shield signal on the hatch pattern
surrounding the sensors on radiated emissions. Note that in these figures, the hatch pattern is grounded when
the driven-shield signal is disabled. Because IMO = 24 MHz, thesre is a spike at 24 MHz and the other spikes are
caused by different hardware and firmware operations of the device.

Application Note 205 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Figure 168 Effect of shield electrode on radiated emissions (150 kHz – 30 MHz)

Figure 169 Effect of shield electrode on radiated emissions (30 MHz – 1 GHz)

Note: Frequency axis is in log scale.

Sensor scan time

Reducing the sensor scan time reduces the average radiated emissions. The sensor-scan time depends on the
scan resolution and modulator clock divider (see Equation 9). Increasing the scan resolution or modulator

clock divider increases the scan time.

Figure 170 and Figure 171 show the impact of sensor scan time on radiated emissions. Note that, here, the

sensor scan time was varied by changing the scan resolution. Because IMO = 24 MHz, there is a spike at 24 MHz

and the other spikes are caused by different hardware and firmware operations of the device.

Spike at 24 MHz

Application Note 206 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

 Sensor scan time

Parameter
Total scan time for five buttons

0.426 ms 0.106 ms

Modulation clock divider 2 2

Scan resolution 10 bits 8 bits

Individual sensor scan time 0.085 ms 0.021 ms

Figure 170 Effect of scan time on radiated emissions (150 kHz – 30 MHz)

Figure 171 Effect of scan time on radiated emissions (30 MHz – 1 GHz)

Note: Frequency axis is in log scale.

Spike at 24 MHz

Application Note 207 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Sense clock source

Using PRS instead of direct clock drive as sense clock source spreads the radiated spectrum and hence reduces
the average radiated emissions. See Figure 172 and Figure 173. Because IMO = 24 MHz, there is a spike at 24
MHz and the other spikes are caused by different hardware and firmware operations of the device.

Figure 172 Effect of sense clock source on radiated emissions (150 kHz – 30 MHz)

Figure 173 Effect of sense clock source on radiated emissions (30 MHz – 1 GHz)

Note: Frequency axis is in log scale.

Inactive sensor termination

Connecting inactive sensors to ground reduces the radiated emission by a greater degree than connecting
them to the shield. Figure 174 and Figure 175 show the impact of different inactive sensor terminations on
radiated emission. Because IMO = 24 MHz, there is a spike at 24 MHz and the other spikes are caused by

different hardware and firmware operations of the device.

Spike at 24 MHz

Application Note 208 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

Figure 174 Effect of inactive sensor termination on radiated emissions (150 kHz – 30 MHz)

Figure 175 Effect of inactive sensor termination on radiated emissions (30 MHz – 1 GHz)

Note: Frequency axis is in log scale.

7.5.3.2.2 Conducted RF noise

The noise current that enters the CAPSENSE™ system through the power and communication lines is called
conducted noise. You can use the following techniques to reduce the conducted RF noise.

• Use decoupling capacitors on the power supply pins to reduce the conducted noise from the power supply.

See section 7.4.11 and the Device datasheet for details.

• Provide GND and VDD planes on the PCB to reduce current loops.

• If the PSoC™ PCB is connected to the power supply using a cable, minimize the cable length and consider
using a shielded cable.

To reduce high-frequency noise, place a ferrite bead around power supply or communication lines.

Spike at 24 MHz

Application Note 209 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7.6 Effect of grounding

7.6.1 CSX method

The equivalent capacitances formed in the CSX method when a finger touches the CSX sensor is shown in
Figure 176. From Figure 176, current drawn from the IDAC (IRX) has two components: Imt and Isc. These two
components depend on the ratio of CbodyDG/Cfs. Because the raw count depends on the amount of current drawn

from IDAC, the increase and decrease of CbodyDG/Cfs will affect the raw count of the sensor and cause a sudden

change in the behavior on some conditions. To understand it better, consider two extreme conditions which
cause CbodyDG>>Cfs and CbodyDG<<Cfs.

Figure 176 Equivalent circuit of the CSX sensor when finger is placed on the button

Where,

CM = Mutual capacitance between the Rx and Tx electrode

Cfs = Capacitance formed between the surface of the finger and electrode

Cfm = Virtual capacitance which reduces the mutual-capacitance CM due to placing a finger

CbodyDG = Body capacitance relative to the device ground

Equation 78. Current drawn from IDAC in CSX method

IRx = Imt + Isc

Imt is due to the effective mutual-capacitance between the Tx and Rx electrode.

Isc = Parasitic current that flows due to the capacitance formed between the sensor and finger

Application Note 210 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7.6.1.1 CbodyDG>>Cfs

Because CbodyDG>>Cfs, you can replace CbodyDG with a ground conductor; the resulting equivalent circuit appears
as shown in Figure 177. Whenever there is a finger touch, the current drawn from the IDAC is directly

dependent upon the effective mutual-capacitance between the Tx and Rx. This condition is observed in a good
board design.

Figure 177 Equivalent circuit of the CSX sensor when Cbody>>Cfs

7.6.1.2 CbodyDG<<Cfs

This condition (CbodyDG<<Cfs) is observed when a finger touches a CSX button with a very thin overlay or no
overlay, or a finger touching the Rx and Tx electrodes directly, or a water drop being present on the Rx and Tx

electrode only. Because CbodyDG<<Cfs, you can remove CbodyDG; the equivalent circuit for this case is as shown in

Figure 178. In this condition, the capacitance introduced by the finger to the electrode Cfs is very high
compared to the capacitance of the finger relative to the device ground CbodyDG.

From Figure 178, it forms a balanced bridge circuit. Due to this, no current flows through Cfm, and also due to
increase in Cfs, Isc increases and thus additional current is drawn from the IDAC. This causes an unexpected

behavior of decrease in the raw count.

Figure 178 Equivalent circuit of the CSX sensor when Cbody<<Cfs

For CSX sensors, design should focus on increasing the ratio of CbodyDG/Cfs. Following are the examples for
increasing the ratio of CbodyDG/Cfs:

1. CbodyDG/Cfs ratio depends on the thickness of the overlay, size of the sensor, and many other factors. By
experimental data, you are recommended not to use overlay thickness below 0.5 mm for CSX sensor. See

Overlay thickness.

2. If the sensor is surrounded by hatch fill connected to ground, there is a lower chance that CbodyDG<<Cfs.
Therefore, ensure good ground in the design. Follow the best practices for the PCB layout guidelines described

in this chapter.

Application Note 211 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

3. In the design, it is recommended to isolate the trace lines of Rx and Tx electrode, external capacitors, and
resistors of the CSX touch sensing system from any conducting surface or a finger touch to avoid direct

interaction. Not following this recommendation may cause CbodyDG<<Cfs.

7.6.2 CSD method

The equivalent capacitances formed in the CSD method when a finger touches the CSD sensor is shown in
Figure 179. It shows that the current drawn from the IDAC directly depends on the capacitance introduced by
the finger touch. ICP is a fixed component and ICF depends on CF, CBG, CGE. From Equation 10, the raw count

depends on the amount of current drawn from IDAC. To understand it better, consider two scenarios of an AC/

DC mains-powered application and a battery-powered application.

Figure 179 Equivalent circuit of the CSD sensor

Equation 79. Current drawn from IDAC in CSD method

I = ICP + ICF

7.6.2.1 AC / DC-powered application

In an AC / DC-powered application using the mains supply, device ground is strongly coupled to earth ground.
Thus, you can replace CGE with a conductor and CBG is usually 100 pF to 200 pF. Since CBG is large when
compared to CF, you can neglect its effect. Finally, the resulting equivalent circuit is shown in Figure 180. The
increase in total capacitance draws a higher current from the IDAC achieving a higher change in raw count for a
finger touch. Thus, in this condition, you get a higher sensitivity, which means that you will get a higher signal

for a finger touch.

Figure 180 Equivalent circuit of the CSD sensor for mains-powered application

Application Note 212 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Design considerations

7.6.2.2 Battery-powered application

In battery-powered portable applications, device ground and earth ground are lightly coupled, thus CGE is small.
The resulting equivalent circuit is shown in Figure 181. Thus, in this condition, you get a lower sensitivity; that

means you will get a lower signal for a finger touch, which is due to a decrease in capacitance seen at the
device.

Figure 181 Equivalent circuit of the CSD for battery-powered application

Following are the recommendations for a CSD system design in a portable application powered by a battery:

1. Add a large ground plane to the system. The ground plane should be away from the sensing element such

that it does not increase the parasitic capacitance of the sensor. Follow the best practices for the PCB
layout guidelines described in this chapter.

2. Use a driven shield to improve the sensitivity of portable devices. Refer to the Layout guidelines for shield

electrode for more details.

3. Reduce the thickness of the overlay material or use an overlay with better dielectric value to improve

sensitivity.

4. Tune the CAPSENSE™ system with powering it by a battery source.

Application Note 213 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ Plus

8 CAPSENSE™ Plus

PSoC™ 4 can perform many additional functions along with CAPSENSE™. The wide variety of features offered by
this device allows you to integrate various system functions in a single chip, as Figure 182 shows. Such
applications are known as CAPSENSE™ Plus applications.

CAPSENSE CapSense Plus

BLE, I2C, UART, SPI
ADC, Comparators,

Opamps

PWMs, Counters,
Timers

System Functionality

Segment LCD Drive,
LED Effects,

Proximity

Figure 182 CAPSENSE™ Plus

The additional features available in a PSoC™ 4 device include:

• Communication: Bluetooth® LE, I2C, UART, SPI, CAN, and LIN

• Analog functions: ADC, comparators, and opamps

• Digital functions: PWMs, counters, timers, and UDBs

• Segment LCD drive

• Bootloaders

• Different power modes: Active, sleep, deep sleep, hibernate, and stop

While using above mentioned additional features, it is recommended to configure it in sinking mode as

applicable.

For more information on PSoC™ 4, see AN79953 - Getting started with PSoC™ 4, or AN91267 - Getting

started with PSoC™ 4 Bluetooth® LE.

The flexibility of the PSoC™ 4 and the unique PSoC™ Creator IDE allow you to quickly make changes to your

design, which accelerates time-to-market. Integrating other system functions significantly reduces overall
system cost. Table 43 shows a list of example applications, where using CAPSENSE™ Plus can result in

significant cost savings.

http://www.cypress.com/?rID=78695&source=an85951
http://www.cypress.com/?rID=102504
http://www.cypress.com/?rID=102504

Application Note 214 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ Plus

 Examples of CAPSENSE™ Plus

Application CAPSENSE™ Opamp ADC Comp

PWM,

Counter,

Timer, UDBs

Comm

(Bluetooth®

LE, I2C, SPI,

UART)

LCD drive GPIOs

Heart rate

monitor (wrist

band)

User interface:

buttons, linear

sliders

TIA,

Buffer

Heart Rate

Measurement,

Battery voltage

measurement

 LED Driving Bluetooth® LE
Segment

LCD

LED

indication

LED bulb

User interface:

buttons, radial

sliders

Amplifier
LED current

measurement

Short circuit

protection

LED color

control

(PrISM*)

Bluetooth® LE LED

indication

Washing

machine

User interface:

buttons, radial

sliders

Temperature

sensor

Water level

monitor

Buzzer,

FOC** motor

control

I2C LCD

display, UART

network

interface

Segment

LCD

LED

indication

Water heater

User interface:

buttons, linear

sliders

Temperature

sensor, water flux

sensor

Water level

monitor
Buzzer

I2C LCD

display, UART

Network

Interface

Segment

LCD

LED

indication

IR remote

controllers

User interface:

buttons, linear

and radial

sliders,

touchpads

Manchester

encoder

LED

indication

Induction

cookers

User interface:

buttons, linear

sliders

Temperature

sensor

Segment

LCD

LED

indication

Motor control

systems

User interface:

buttons, linear

sliders

BLDC*** and

FOC motor

control

LED

indication

Gaming /

simulation

controllers

User interface:

buttons,

touchpads

Reading analog

joysticks

I2C/SPI/UART

communicati

on interface

Segment

LCD

LED

indication

Thermal

printers

User interface:

buttons

Overheat

protection, paper

sensor

Stepper

motor control

SPI

communicati

on interface

LED

indication

* PrISM = Precision illumination signal modulation

** FOC = Field oriented control

*** BLDC = Brushless DC motor

Application Note 215 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ Plus

Figure 183 shows a general block diagram of a CAPSENSE™ Plus application, such as an induction cooker or a
microwave oven.

 ADC

8-bit PWM

M
U

X
Ext INT

Temperature

Cortex
®
-M0

AC

Zero Crossing

8~16

Buttons,
Slider

Heater

Voltage

Current

CAPSENSE
Module

I/ O

LED / LCD Interface

I2C/SPI To Main Board

5 V Power

PWM

PSoC 4

Figure 183 CAPSENSE™ Plus system with PSoC™ 4

In this application, the 12-bit 1-Msps SAR ADC in the PSoC 4 detects over-current, overvoltage, and high
temperature conditions. The PWM output drives the speaker for status and alarm tones. Another PWM controls

the heating element in the system. The CAPSENSE™ buttons and slider constitute the user interface. PSoC 4 can
also drive a segment LCD for visual outputs. PSoC 4 has a serial communication block that can connect to the
main board of the system.

Figure 184 shows the application-level block diagram of a fitness tracker based on PSoC™ 6 MCU with

Bluetooth® LE Connectivity. The device provides a one-chip solution and includes features like activity
monitoring, environment monitoring, CAPSENSE™ for user interface, Bluetooth® LE connectivity, and so on. For
more information on PSoC™ 6 MCU, see AN210781 – Getting started with PSoC™ 6 MCU with Bluetooth® LE
connectivity.

http://www.cypress.com/an210781
http://www.cypress.com/an210781

Application Note 216 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

CAPSENSE™ Plus

PSoC MCU with BLE Connectivity
Wearable Solution

Display

Display
driver
(SCB)

A
M
U
X

ADC

SPI

QSPI324

RTC

32

32

32

CAPSENSE

32 5

6

Slider
Arm®

Cortex® -
M4 & M0+

MCU

Thermistor

BLE

BLE 32

I2C

232

6
Motion
Sensor

PDM

322

Digital
Microphone

UART

432

GPS

I2C

322

SPI

532
Finger- print

Sensor

PSoC

4100PS

Air quality
sensor

Battery V/I

Haptics

PWM

321

Figure 184 Fitness tracker application with PSoC™ 6 MCU with Bluetooth® LE connectivity block

diagram

CAPSENSE™ Plus systems, such as the above two examples, allow you to reduce your board size, BOM cost, and

power consumption.

Application Note 217 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Resources

9 Resources

9.1 Website

Visit the Getting started with PSoC 4™, Getting started with PSoC™ 4 Bluetooth® LE, Getting started with
PSoC™ 6 MCU, and Getting started with PSoC™ 6 MCU with Bluetooth® LE connectivity website to
understand the PSoC™ 4, PSoC™ 6 MCU with Bluetooth® LE connectivity.

9.2 Device datasheet

• PSoC™ 4 datasheet

• PSoC™ 4 Bluetooth® LE datasheet

• PSoC™ 6 MCU devices

9.3 Component datasheet / middleware document

• PSoC™ 4 Capacitive Sensing

• PSoC™ 6 capacitive sensing

• CAPSENSE™ middleware library

• ModusToolbox™ CAPSENSE™ configurator guide

9.4 Technical reference manual

The PSoC™ 4 Technical reference manual (TRM) and PSoC™ 6 Technical reference manual (TRM) provide
quick and easy access to information on PSoC™ 4 and PSoC™ 6 architecture including top-level architectural

diagrams, register summaries, and timing diagrams.

9.5 Development kits

Table 6 lists Infineon® development kits that support PSoC™ 4 and PSoC™ 6 CAPSENSE™.

9.6 PSoC™ Creator

PSoC™ Creator is a state-of-the-art, easy-to-use integrated development environment. See the PSoC™ Creator

home page.

9.7 ModusToolbox™

ModusToolbox™ software suite is used for the development of PSoC™ 4 and PSoC™ 6 based CAPSENSE™

applications. You can download the ModusToolbox™ software here. The related documents are as follows:

• ModusToolbox™ release notes

• ModusToolbox™ install guide

• ModusToolbox™ user guide

• ModusToolbox™ quick start guide

• ModusToolbox™ CAPSENSE™ configurator

• ModusToolbox™ CAPSENSE™ tuner

• ModusToolbox™ device configurator

• ModusToolbox™ SmartIO configurator

• PSoC™ Creator to ModusToolbox™

http://www.cypress.com/?rID=78695&source=an85951
http://www.cypress.com/?rID=102504
http://www.cypress.com/an221774
http://www.cypress.com/an221774
http://www.cypress.com/an210781
http://www.cypress.com/?id=4749&rtID=107&source=an85951
http://www.cypress.com/?rID=99492&source=psoc4ble
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575&f%5B2%5D=field_related_products%3A114026
https://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense
https://www.cypress.com/documentation/component-datasheets/psoc-6-capacitive-sensing-capsense-20
https://github.com/cypresssemiconductorco/capsense
http://www.cypress.com/ModusToolboxCapSenseConfig
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A1297&f%5b2%5d=resource_meta_type%3A583
http://www.cypress.com/psoc6trm
http://www.cypress.com/?id=2494&source=an85951
http://www.cypress.com/?id=2494&source=an85951
http://www.cypress.com/modustoolbox
http://www.cypress.com/ModusToolboxReleaseNotes
http://www.cypress.com/ModusToolboxInstallGuide
http://www.cypress.com/ModusToolboxUserGuide
http://www.cypress.com/ModusToolboxQSG
http://www.cypress.com/ModusToolboxCapSenseConfig
http://www.cypress.com/ModusToolboxCapSenseTuner
http://www.cypress.com/ModusToolboxDeviceConfig
http://www.cypress.com/ModusToolboxSmartIOConfig
http://www.cypress.com/ModusToolboxUserGuide

Application Note 218 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Resources

• ModusToolbox™ command line

9.8 Application notes

® A large collection of application notes are available to get your design up and running fast. See PSoC™ 4
application notes, PSoC™ 4 Bluetooth® LE application notes, CAPSENSE™ application notes and design
guides.

Following is the list of CAPSENSE™ specific applications notes:

Design guide for PSoC™ 3 and PSoC™ 5LP devices

• PSoC™ 3 and PSoC™ 5LP CAPSENSE™ design guide

Design guides for the CAPSENSE™ Express family

• CY8CMBR3XXX CAPSENSE™ design guide

• CY8CMBR2110 CAPSENSE™ design guide

• CY8CMBR2016 CAPSENSE™ design guide

• CY8CMBR2010 CAPSENSE™ design guide

• CY8CMBR2044 CAPSENSE™ design guide

• CAPSENSE™ Express™: CY8C201XX application notes

Design guides for PSoC™ 1 devices

• CY8C20XX7/S design guide

• CY8C20XX6A/H CAPSENSE™ design guide

• CY8C21X34/B CAPSENSE™ design guide

• CY8C20X34 CAPSENSE™ design guide

Getting started application note

• AN79953 - Getting started with PSoC™ 4

• AN210781 – Getting started with PSoC™ 6 MCU with Bluetooth® LE connectivity

• AN221774 – Getting started with PSoC™ 6 MCU

9.9 Design support

• Knowledge base articles – Browse technical articles by product family or perform a search on CAPSENSE™
topics.

• White papers – Learn about advanced capacitive-touch interface topics.

• Cypress developer community – Connect with the technical community and exchange information.

• Video library – Quickly get up to speed with tutorial videos.

• Quality and reliability – We are committed to complete customer satisfaction. At our Quality website, you
can find reliability and product qualification reports.

• Technical support – Submit your design for review by creating a support case. You need to register and

login at the website to be able to contact technical support. It is recommended to use PDF prints for the

schematic and Gerber files with layer information for the layout.

http://www.cypress.com/ModusToolboxUserGuide
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A1297&f%5b2%5d=resource_meta_type%3A574
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A1297&f%5b2%5d=resource_meta_type%3A574
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=76&id=5301
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A1316&f%5b2%5d=resource_meta_type%3A574
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A1316&f%5b2%5d=resource_meta_type%3A574
http://www.cypress.com/?rID=58549
http://www.cypress.com/?rID=90800
http://www.cypress.com/?rID=66759
http://www.cypress.com/?rID=58572
http://www.cypress.com/?rID=61673
http://www.cypress.com/?rID=48789
http://www.cypress.com/documentation/application-notes/capsense-express-cy8c201xxx-application-notes
http://www.cypress.com/?rID=63035
http://www.cypress.com/?rID=48788
http://www.cypress.com/?rID=48791
http://www.cypress.com/?rID=48790
http://www.cypress.com/documentation/application-notes/an79953-getting-started-psoc-4
http://www.cypress.com/an210781
http://www.cypress.com/documentation/application-notes/an221774-getting-started-psoc-6-mcu
http://www.cypress.com/knowledge-base-search
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=resource_meta_type%3A581&f%5b2%5d=field_related_products%3A1323
http://www.cypress.com/?id=2203&source=an85951
http://www.cypress.com/?id=2660&source=an85951
http://www.cypress.com/?id=1090&source=an85951
http://www.cypress.com/support
http://www.cypress.com/support

Application Note 219 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Glossary

10 Glossary

AMUXBUS

Analog multiplexer bus available inside PSoC™ that helps to connect I/O pins with multiple internal analog
signals.

Baseline

A value resulting from a firmware algorithm that estimates a trend in the Raw Count when there is no human
finger present on the sensor. The Baseline is less sensitive to sudden changes in the Raw Count and provides a
reference point for computing the Difference Count.

Button or button widget

A widget with an associated sensor that can report the active or inactive state (that is, only two states) of the
sensor. For example, it can detect the touch or no-touch state of a finger on the sensor.

Difference count

The difference between Raw Count and Baseline. If the difference is negative, or if it is below Noise Threshold,

the Difference Count is always set to zero.

Capacitive sensor

A conductor and substrate, such as a copper button on a printed circuit board (PCB), which reacts to a touch or
an approaching object with a change in capacitance.

CAPSENSE

 Infineon® Touch-sensing user interface solution. The industry’s No. 1 solution in sales by 4x over No. 2.

CAPSENSE Mechanical Button Replacement (MBR)

 Configurable solution to upgrade mechanical buttons to capacitive buttons, requires minimal engineering
effort to configure the sensor parameters and does not require firmware development. These devices include
the CY8CMBR3XXX and CY8CMBR2XXX families.

Centroid or Centroid Position

A number indicating the finger position on a slider within the range given by the Slider Resolution. This number
is calculated by the CAPSENSE™ centroid calculation algorithm.

Compensation IDAC

A programmable constant current source, which is used by CSD to compensate for excess sensor CP. This IDAC
is not controlled by the Sigma-Delta Modulator in the CSD block unlike the Modulation IDAC.

CSD

CAPSENSE™ Sigma Delta (CSD) is a patented method of performing self-capacitance (also called self-cap)
measurements for capacitive sensing applications.

In CSD mode, the sensing system measures the self-capacitance of an electrode, and a change in the self-

capacitance is detected to identify the presence or absence of a finger.

Application Note 220 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Glossary

Debounce

A parameter that defines the number of consecutive scan samples for which the touch should be present for it
to become valid. This parameter helps to reject spurious touch signals.

A finger touch is reported only if the Difference Count is greater than Finger Threshold + Hysteresis for a
consecutive Debounce number of scan samples.

Driven-shield

A technique used by CSD for enabling liquid tolerance in which the Shield Electrode is driven by a signal that is
equal to the sensor switching signal in phase and amplitude.

Electrode

A conductive material such as a pad or a layer on PCB, ITO, or FPCB. The electrode is connected to a port pin on
a CAPSENSE™ device and is used as a CAPSENSE™ sensor or to drive specific signals associated with
CAPSENSE™ functionality.

Finger threshold

A parameter used with Hysteresis to determine the state of the sensor. Sensor state is reported ON if the

Difference Count is higher than Finger Threshold + Hysteresis, and it is reported OFF if the Difference Count is
below Finger Threshold – Hysteresis.

Ganged sensors

The method of connecting multiple sensors together and scanning them as a single sensor. Used for increasing
the sensor area for proximity sensing and to reduce power consumption.

To reduce power when the system is in low-power mode, all the sensors can be ganged together and scanned

as a single sensor taking less time instead of scanning all the sensors individually. When you touch any of the
sensors, the system can transition into active mode where it scans all the sensors individually to detect which

sensor is activated.

PSoC™ supports sensor-ganging in firmware, that is, multiple sensors can be connected simultaneously to

AMUXBUS for scanning.

Gesture

Gesture is an action, such as swiping and pinch-zoom, performed by the user. CAPSENSE™ has a gesture
detection feature that identifies the different gestures based on predefined touch patterns. In the CAPSENSE™
Component, the Gesture feature is supported only by the Touchpad Widget.

Guard sensor

Copper trace that surrounds all the sensors on the PCB, similar to a button sensor and is used to detect a liquid
stream. When the Guard Sensor is triggered, firmware can disable scanning of all other sensors to prevent false

touches.

Hatch fill or hatch ground or hatched ground

While designing a PCB for capacitive sensing, a grounded copper plane should be placed surrounding the

sensors for good noise immunity. But a solid ground increases the parasitic capacitance of the sensor which is
not desired. Therefore, the ground should be filled in a special hatch pattern. A hatch pattern has closely-
placed, crisscrossed lines looking like a mesh and the line width and the spacing between two lines determine
the fill percentage. In case of liquid tolerance, this hatch fill referred as a shield electrode is driven with a shield
signal instead of ground.

Application Note 221 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Glossary

Hysteresis

A parameter used to prevent the sensor status output from random toggling due to system noise, used in
conjunction with the Finger Threshold to determine the sensor state. See Finger threshold.

IDAC (current-output digital-to-analog converter)

Programmable constant current source available inside PSoC™, used for CAPSENSE™ and ADC operations.

Liquid tolerance

The ability of a capacitive sensing system to work reliably in the presence of liquid droplets, streaming liquids

or mist.

Linear slider

A widget consisting of more than one sensor arranged in a specific linear fashion to detect the physical position

(in single axis) of a finger.

Low baseline reset

A parameter that represents the maximum number of scan samples where the Raw Count is abnormally below

the Negative Noise Threshold. If the Low Baseline Reset value is exceeded, the Baseline is reset to the current

Raw Count.

Manual-tuning

The manual process of setting (or tuning) the CAPSENSE™ parameters.

Matrix buttons

A widget consisting of more than two sensors arranged in a matrix fashion, used to detect the presence or

absence of a human finger (a touch) on the intersections of vertically and horizontally arranged sensors.

If M is the number of sensors on the horizontal axis and N is the number of sensors on the vertical axis, the
Matrix Buttons Widget can monitor a total of M x N intersections using ONLY M + N port pins.

When using the CSD sensing method (self-capacitance), this Widget can detect a valid touch on only one
intersection position at a time.

Modulation capacitor (CMOD)

An external capacitor required for the operation of a CSD block in Self-Capacitance sensing mode.

Modulator clock

A clock source that is used to sample the modulator output from a CSD block during a sensor scan. This clock is

also fed to the Raw Count counter. The scan time (excluding pre and post processing times) is given by
(2N – 1)/Modulator Clock Frequency, where N is the Scan Resolution.

Modulation IDAC

Modulation IDAC is a programmable constant current source, whose output is controlled (ON/OFF) by the
sigma-delta modulator output in a CSD block to maintain the AMUXBUS voltage at VREF. The average current
supplied by this IDAC is equal to the average current drawn out by the sensor capacitor.

Multi sense converter (MSC)

The multi sense converter is the analog to digital converter used in Fifth-Generation CAPSENSE™ technology
also known as Ratiometric sensing technology.

Application Note 222 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Glossary

Mutual-capacitance

Capacitance associated with an electrode (say Tx) with respect to another electrode (say Rx) is known as
mutual-capacitance.

Negative noise threshold

A threshold used to differentiate usual noise from the spurious signals appearing in negative direction. This
parameter is used in conjunction with the Low Baseline Reset parameter.

Baseline is updated to track the change in the Raw Count as long as the Raw Count stays within Negative Noise
Threshold, that is, the difference between Baseline and Raw count (Baseline – Raw count) is less than Negative
Noise Threshold.

Scenarios that may trigger such spurious signals in a negative direction include: a finger on the sensor on

power-up, removal of a metal object placed near the sensor, removing a liquid-tolerant CAPSENSE™-enabled

product from the water; and other sudden environmental changes.

Noise (CAPSENSE™ noise)

The variation in the Raw Count when a sensor is in the OFF state (no touch), measured as peak-to-peak counts.

Noise threshold

A parameter used to differentiate signal from noise for a sensor. If Raw Count – Baseline is greater than Noise
Threshold, it indicates a likely valid signal. If the difference is less than Noise Threshold, Raw Count contains

nothing but noise.

Overlay

A non-conductive material, such as plastic and glass, which covers the capacitive sensors and acts as a touch-

surface. The PCB with the sensors is directly placed under the overlay or is connected through springs. The
casing for a product often becomes the overlay.

Parasitic capacitance (CP)

Parasitic capacitance is the intrinsic capacitance of the sensor electrode contributed by PCB trace, sensor pad,
vias, and air gap. It is unwanted because it reduces the sensitivity of CSD.

Proximity sensor

A sensor that can detect the presence of nearby objects without any physical contact.

Radial slider

A widget consisting of more than one sensor arranged in a specific circular fashion to detect the physical

position of a finger.

Raw count

The unprocessed digital count output of the CAPSENSE™ hardware block that represents the physical

capacitance of the sensor.

Refresh interval

The time between two consecutive scans of a sensor.

Scan resolution

Resolution (in bits) of the Raw Count produced by the CSD block.

Application Note 223 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Glossary

Scan time

Time taken for completing the scan of a sensor.

Self-capacitance

The capacitance associated with an electrode with respect to circuit ground.

Sensitivity

The change in Raw Count corresponding to the change in sensor capacitance, expressed in counts/pF.
Sensitivity of a sensor is dependent on the board layout, overlay properties, sensing method, and tuning

parameters.

Sense clock

A clock source used to implement a switched-capacitor front-end for the CSD sensing method.

Sensor

See Capacitive sensor.

Sensor auto reset

A setting to prevent a sensor from reporting false touch status indefinitely due to system failure, or when a

metal object is continuously present near the sensor.

When Sensor Auto Reset is enabled, the Baseline is always updated even if the Difference Count is greater than
the Noise Threshold. This prevents the sensor from reporting the ON status for an indefinite period of time.

When Sensor Auto Reset is disabled, the Baseline is updated only when the Difference Count is less than the

Noise Threshold.

Sensor ganging

See Ganged sensors.

Shield electrode

Copper fill around sensors to prevent false touches due to the presence of water or other liquids. Shield

Electrode is driven by the shield signal output from the CSD block. See Driven-shield.

Shield tank capacitor (CSH)

An optional external capacitor (CSH Tank Capacitor) used to enhance the drive capability of the CSD shield,

when there is a large shield layer with high parasitic capacitance.

Signal (CAPSENSE™ signal)

Difference Count is also called Signal. See Difference Count.

Signal-to-noise ratio (SNR)

The ratio of the sensor signal, when touched, to the noise signal of an untouched sensor.

Slider resolution

A parameter indicating the total number of finger positions to be resolved on a slider.

Application Note 224 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Glossary

SmartSense™ auto-tuning

A CAPSENSE™ algorithm that automatically sets sensing parameters for optimal performance after the design
phase and continuously compensates for system, manufacturing, and environmental changes.

Touchpad

A Widget consisting of multiple sensors arranged in a specific horizontal and vertical fashion to detect the X and
Y position of a touch.

Trackpad

See Touchpad.

Tuning

The process of finding the optimum values for various hardware and software or threshold parameters

required for CAPSENSE™ operation.

VREF

Programmable reference voltage block available inside PSoC™ used for CAPSENSE™ and ADC operation.

Widget

A user-interface element in the CAPSENSE™ Component that consists of one sensor or a group of similar
sensors. Button, proximity sensor, linear slider, radial slider, matrix buttons, and touchpad are the supported

widgets.

Application Note 225 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Revision history

Revision history

Document

version

Date of

release

Description of changes

2013-04-19 ** New Design Guide.

2013-07-29 *A Added dual IDAC support. Updated some schematics in chapter 6. Other minor

changes to chapters 3, 5, and 6.

2013-11-13 *B Added support of CY8C4000 devices. Minor fixes throughout the document.

2014-02-24 *C Updated the table of device features. Changed IDAC names to sync with new

PSoC™ Creator Component terms. Added a schematic checklist. Changed

screenshots to match the new Component version.

2014-02-27 *D Updated Table 1-1 per PSoC™ 4000 datasheet.

2014-03-20 *E Added firmware design considerations to Chapter 6.

Added power supply layout and schematic considerations to Chapter 6.

Updated the IMO range for PSoC™ 4000

2014-04-15 *F Updated to support PSoC™ 4000 and PSoC™ Creator 3.0 SP1.

2014-08-29 *G Added Reference to Getting started with CAPSENSE™ in Proximity (three-

dimensional)

Renamed Section 2.5 to Liquid tolerance and re-wrote this section.
Updated the recommendations for Shield drive i.e. Csh_tank precharge and CMOD
precharge in Section 3.2.7 CAPSENSE™ CSD shielding.

Added recommendation for setting “API resolution” in Section

Added guidelines on how to select value of “Sensitivity” parameter in Section

Updated recommended values of threshold and hysteresis parameters in Section

Manual tuning trade-offs.

Added Section Manual Tuning Slider Example.

Updated maximum overlay thickness value for sliders in Table 27.

Added guideline on maximum thickness for overlays of materials other than acrylic
in Section 7.3.2 Overlay thickness.

Re-wrote Section Slider design.

Added recommendations on DC loads in Section 6.3.5

Renamed and rewrote section 7.4.12 to Layout guidelines for liquid tolerance.

Added Section 7.4.13.1 External capacitors pin selection.

Updated slider related recommendations in Layout rule

Updated Electromagnetic compatibility (EMC) considerations, added extensive
data on hardware and firmware considerations.

2014-12-19 *H Added information for the PSoC™ 4 Bluetooth® LE family of devices.

Added information for the PRoC Bluetooth® LE family of devices.

Updated ground and power layout guidelines in Section 7.4.10 and Section 7.4.11.

2015-01-21 *I Added information for PSoC™ 4200-M family of devices.

Added footnote in section Slider .

Added GPIO source/sink current limit in Table 34.

Changed document title to PSoC™ 4 CAPSENSE™ Design Guide – AN85951.

2015-06-02 *J Changed Document Title to “AN85951 – PSoC™ 4 CAPSENSE™ Design Guide” .

Updated Design considerations.

http://www.cypress.com/?rID=48787

Application Note 226 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Revision history

Document

version

Date of

release

Description of changes

Updated Preventing ESD discharge.

Updated Figure 156.

Updated Redirect.
Replaced "Guard Ring" with "Ground Ring".

2015-08-20 *K Added Table 3-1.

Removed section 3.2.1 CMOD Precharge.

Added section CAPSENSE™ in PSoC 4xxxM/4xxxL-Series.

Updated section Trace routing.

Added reference of AN2397.

Added recommendation for modulator clock divider in section Manual tuning

trade-offs.

Added Figure 153.

2015-09-16 *L Updated Section 1.1.

Updated 10 Figure 1.

Updated Table 6, Table 32, Table 33, Table 35.

2016-01-19 *M Updated Introduction.

Moved Signal-to-noise ratio (SNR) to Chapter 2.

Updated Chapters PSoC™ 4 and PSoC 6™ MCU and for CAPSENSE™ performance

details.

Added section to Chapter 4.

Added Glossary.

2016-02-23 *N Added information on mutual-capacitance sensing in PSoC™ 4 device series.
Added information on CAPSENSE™ 3.0 changes.

Added following sections:

− Mutual-capacitance sensing

− CAPSENSE Architecture in PSoC 4 S-series

Updated following sections:

− Introduction

− CAPSENSE™

− CAPSENSE™ design and development tools

− CAPSENSE™ performance tuning

2016-03-04 *O Added PSoC™ Analog Coprocessor references.

Updated External capacitors pin selection section.

Updated Development kits section.

Updated document title.

Updated Copyright notice.

2016-06-14 *P Updated IDAC sinking mode recommendation.

Updated template.

2016-11-18 *Q Updated Recommended pins for external capacitors.

2017-04-19 *R Updated logo and copyright.

2017-09-22 *S Added references to PSoC™ 4100S Plus throughout the document.

Updated section 1.2 CAPSENSE™ features with PSoC™ 4100S Plus features.

Application Note 227 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Revision history

Document

version

Date of

release

Description of changes

Updated PSoC™ 4 and PSoC™ 6 CAPSENSE™ development kits with CY8CKIT-149

PSoC™ 4100S Plus prototyping kit.
Updated section 9.8 Application notes with specific list of CAPSENSE™ Application
Notes

2018-01-18 *T Changed document title

Added references to PSoC™ 6 MCU features throughout the document

Updated section 3.1 CAPSENSE™ generations in PSoC™ 4 and PSoC™ 6 with

generalized architecture block diagram for CSD sensing.

Added section 6 Gesture in CAPSENSE™.

Updated Table 6, Table 15, Table 36.

2018-02-28 *U Added references to PSoC™ 4100PS throughout the document.

2018-11-08 *V Updated the entire document with references to CY8C62x8 and CY8C62xA devices.

Updated the entire document with references to ModusToolbox™.
Updated Table 6 with the information of PSoC™ 6 kits.

Updated section Mutual-capacitance button design with the information of
additional mutual cap key.

Removed all references to PRoC Bluetooth® LE devices.

2019-04-11 *W Updated SmartSense and Manual tuning with respect to the latest component.

Removed details on different shield drive mode from CAPSENSE™ CSD

Updated CAPSENSE™ CSX sensing

− Updated figures in PSoC™ Creator,

− SmartSense, and Gesture in CAPSENSE™ with respect to the latest

component

Removed a table in External capacitors pin selection section

Updated Table 3

2020-01-07 *X Added Liquid tolerance for Mutual Capacitance Sensing section

Removed Mutual Capacitance Button Design section

Updated Table 3-2 and Table 3-3

Updated CAPSENSE™ CSX Sensing Method

Added ModusToolBox™ section in Chapter 4

Updated SmartSense and Manual Tuning section with respect to the latest

component.

Updated Slider Tuning Guidelines section

Added Tuning Shield Electrode section

Updated Gesture chapter with gesture tuning guidelines

Updated the Low Power design section

Updated Sensor and Device placement section

Updated Slider Design section

Added Effect of Grounding in CSX method and Effect of Grounding in CSD method

section

2020-03-18 *Y Updated Sensor pin selection and sections.

2020-10-08 *Z Added 4.2.2 CAPSENSE™ configurator.

Application Note 228 of 229 001-85951 Rev. AA

 2021-10-01

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Revision history

Document

version

Date of

release

Description of changes

Moved Tuning Shield Electrode section under 5.3.2 CSD sensing method (third-

and fourth-generation).
Added 5.3.7.12 I am observing a low CM for my CSX button.
Added 7.4.3.2 Mutual-capacitance button design.

Added additional layout guidelines in 7.4.5 Sensor and device placement.

Added additional trace routing guidelines in 7.4.7 Trace routing.

Added additional guard trace guidelines in 7.4.8 Crosstalk .

Added new section 7.5 Noise in CAPSENSE™ system.

Added a single line description on self cap buttons in 7.4.3.1 Self-capacitance

button .

Moved ESD and Electromagnetic compatibility (EMC) considerations under 7.5.3
External noise.

Moved Effect of grounding on CSX method and effect of grounding on CSD method

under Effect of grounding.

2021-10-01 AA Updated to IFX template.

Updated CAPSENSE™ features with new Fifth-Generation CAPSENSE™ block and

PSoC™ 4100S Max features.

Update Table 2.

Added new section CAPSENSE™ CSD-RM sensing method (fifth-generation) and

CAPSENSE™ CSX-RM sensing method (fifth-generation).

Added new section for features Autonomous scanning and Usage of multiple

channels.

Removed “5.3.2.4 Button widget example” and replaced with Button widget

tuning.

Added new section Touchpad widget tuning.

Added new section for Fifth-generation CAPSENSE™ sensing method - CSD-RM
sensing method (fifth-generation) and CSX-RM sensing method (Fifth-

generation).

Updated Table 27, Table 35, and Table 36.

Updated Copyright information.

s

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2021 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Go to www.cypress.com/support

Document reference

IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”).

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement of
intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and standards
concerning customer’s products and any use of the
product of Infineon Technologies in customer’s
applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

 Edition 2021-10-01

001-85951 Rev. AA

https://www.cypress.com/support
http://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	1.1 Overview
	1.2 CAPSENSE™ features
	1.3 PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ Plus features
	1.4 CAPSENSE™ design flow

	2 CAPSENSE™ technology
	2.1 CAPSENSE™ fundamentals
	2.1.1 Self-capacitance sensing
	2.1.2 Mutual-capacitance sensing

	2.2 Capacitive touch sensing method
	2.2.1 CAPSENSE™ sigma delta (CSD)
	2.2.2 CAPSENSE™ crosspoint (CSX)

	2.3 Signal-to-noise ratio (SNR)
	2.4 CAPSENSE™ widgets
	2.4.1 Buttons (zero-dimensional)
	2.4.2 Sliders (one-dimensional)
	2.4.3 Touchpads / Trackpads (two-dimensional)
	2.4.4 Proximity (three-dimensional)

	2.5 Liquid tolerance
	2.5.1 Liquid tolerance for self-capacitance sensing
	2.5.1.1 Effect of liquid droplets and liquid stream on a self-capacitance sensor
	2.5.1.2 Driven-shield signal and shield electrode
	2.5.1.3 Guard sensor

	2.5.2 Liquid tolerance for mutual-capacitance sensing
	2.5.2.1 Effect of liquid droplets and liquid stream on a mutual-capacitance sensor
	2.5.2.2 Using self-capacitance sensing for liquid tolerance of mutual-capacitance sensors

	2.5.3 Effect of liquid properties on liquid-tolerance performance

	3 PSoC™ 4 and PSoC 6™ MCU CAPSENSE™
	3.1 CAPSENSE™ generations in PSoC™ 4 and PSoC™ 6
	3.2 CAPSENSE™ CSD sensing method (third- and fourth-generation)
	3.2.1 GPIO cell capacitance to current converter
	3.2.2 IDAC sourcing mode
	3.2.3 IDAC sinking mode
	3.2.4 CAPSENSE™ clock generator
	3.2.4.1 Sense clock
	3.2.4.2 Modulator clock

	3.2.5 Sigma-delta converter
	3.2.6 Analog multiplexer (AMUX)
	3.2.7 CAPSENSE™ CSD shielding

	3.3 CAPSENSE™ CSX sensing method (third- and fourth-generation)
	3.4 CAPSENSE™ CSD-RM sensing method (fifth-generation)
	3.4.1 GPIO cell capacitance to charge converter
	3.4.2 Capacitor DACs (CDACs)
	3.4.3 CAPSENSE™ clock generator
	3.4.3.1 Sense clock
	3.4.3.2 Modulator clock

	3.4.4 Ratiometric sensing technology
	3.4.5 Analog multiplexer (AMUX) and control matrix (CTRLMUX)
	3.4.6 CAPSENSE™ CSD-RM shielding
	3.4.6.1 Active shielding
	3.4.6.2 Passive shielding

	3.5 CAPSENSE™ CSX-RM sensing method (fifth-generation)
	3.5.1 Ratiometric sensing technology

	3.6 Autonomous scanning
	3.7 Usage of multiple channels

	4 CAPSENSE™ design and development tools
	4.1 PSoC™ Creator
	4.1.1 CAPSENSE™ component
	4.1.2 CapSense_ADC component
	4.1.3 Tuner GUI
	4.1.4 Example projects

	4.2 ModusToolbox™
	4.2.1 CAPSENSE™ middleware
	4.2.2 CAPSENSE™ configurator
	4.2.3 CSDADC middleware
	4.2.4 CSDIDAC middleware
	4.2.5 CAPSENSE™ tuner
	4.2.6 Example projects

	4.3 Hardware kits

	5 CAPSENSE™ performance tuning
	5.1 Selecting between SmartSense and manual tuning
	5.2 SmartSense
	5.2.1 Overview
	5.2.2 SmartSense full auto-tune
	5.2.2.1 Tuning button widgets
	5.2.2.2 Tuning slider widgets
	5.2.2.3 Tuning proximity widgets

	5.2.3 SmartSense hardware parameters-only mode
	5.2.4 SmartSense for initial tuning

	5.3 Manual tuning
	5.3.1 Overview
	5.3.2 CSD sensing method (third- and fourth-generation)
	5.3.2.1 Basics
	5.3.2.1.1 Conversion gain and CAPSENSE™ signal
	5.3.2.1.2 Flat-spots
	Flat-Spots Reduction Techniques

	5.3.2.2 Selecting CAPSENSE™ hardware parameters
	5.3.2.2.1 Using SmartSense to determine hardware parameters
	5.3.2.2.2 Manually tuning hardware parameters
	Sense clock parameters
	Sense clock source
	Sense clock frequency

	Modulator clock frequency
	Modulation and compensation IDACs
	Compensation IDAC
	Auto-calibration
	Selecting DAC codes
	Scan resolution

	5.3.2.2.3 Tuning shield electrode
	Shield electrode tuning theory
	Tuning shield-related parameters
	Enable shield tank capacitor
	Shield electrode delay
	Shield SW resistance
	Number of shield electrodes
	Inactive sensor connection

	5.3.2.3 Selecting CAPSENSE™ software parameters
	5.3.2.3.1 Baseline
	5.3.2.3.2 Baseline update algorithm
	5.3.2.3.3 Finger threshold
	5.3.2.3.4 Hysteresis
	5.3.2.3.5 Noise threshold
	5.3.2.3.6 Negative noise threshold
	5.3.2.3.7 Low baseline reset
	5.3.2.3.8 Debounce
	5.3.2.3.9 Sensor auto reset
	5.3.2.3.10 Multi-frequency scan

	5.3.2.4 Button widget tuning
	5.3.2.5 Slider widget tuning
	5.3.2.6 Touchpad widget tuning
	5.3.2.6.1 CSD finger detection criteria

	5.3.2.7 Proximity widget tuning

	5.3.3 CSX sensing method (third- and fourth-generation)
	5.3.3.1 Basics
	5.3.3.1.1 Conversion gain and CAPSENSE™ signal

	5.3.3.2 Selecting CAPSENSE™ hardware parameters
	5.3.3.2.1 Tx clock parameters
	Tx clock source
	Tx clock frequency

	5.3.3.2.2 Modulator clock frequency
	5.3.3.2.3 IDAC
	5.3.3.2.4 Number of sub-conversions

	5.3.3.3 Selecting CAPSENSE™ software parameters
	5.3.3.4 Button widget tuning
	5.3.3.5 Touchpad widget tuning
	5.3.3.5.1 CSX finger detection criteria

	5.3.4 CSD-RM sensing method (fifth-generation)
	5.3.4.1 Basics
	5.3.4.1.1 Conversion gain and CAPSENSE™ signal
	Conversion gain in single CDAC
	Conversion gain in dual CDAC mode

	5.3.4.1.2 Flat-spots
	Flat-spots reduction techniques

	5.3.4.2 Selecting CAPSENSE™ hardware parameters
	5.3.4.2.1 Using SmartSense to determine hardware parameters
	5.3.4.2.2 Manually tuning hardware parameters
	Scan mode
	Sensor connection method
	Modulator clock frequency
	Initialization sub-conversions
	Sense clock parameters
	Sense clock source
	Sense clock divider

	Number of sub-conversions
	Capacitive DACs
	Reference CDAC (Cref)
	Compensation CDAC (Ccomp)

	Compensation CDAC divider
	Auto-calibration
	Selecting CDAC codes
	CDAC dither

	5.3.4.2.3 Tuning shield electrode
	Shield electrode tuning theory
	Tuning shield-related parameters
	Inactive sensor connection
	Number of shield electrodes (total shield count)
	Shield mode

	5.3.4.3 Selecting CAPSENSE™ software parameters
	5.3.4.4 Configuring autonomous scan
	5.3.4.4.1 Chained scanning – DMA

	5.3.4.5 Multi-channel scanning
	5.3.4.6 Button widget tuning
	5.3.4.7 Slider widget tuning
	5.3.4.8 Touchpad widget tuning
	5.3.4.9 Proximity widget example

	5.3.5 CSX-RM sensing method (Fifth-generation)
	5.3.5.1 Basics
	5.3.5.1.1 Conversion gain and CAPSENSE™ signal
	Conversion gain in single CDAC
	Conversion gain in dual CDAC mode

	5.3.5.2 Selecting CAPSENSE™ hardware parameters
	5.3.5.2.1 Scan mode
	5.3.5.2.2 Sensor connection method
	5.3.5.2.3 Modulator clock frequency
	5.3.5.2.4 Initialization sub-conversions
	5.3.5.2.5 Tx clock parameters
	Tx clock source
	Tx clock frequency

	5.3.5.2.6 Number of sub-conversions
	5.3.5.2.7 Capacitive DACs
	Reference CDAC (Cref)
	Compensation CDAC (Ccomp)

	5.3.5.2.8 Compensation CDAC divider
	5.3.5.2.9 Auto-calibration
	5.3.5.2.10 Selecting CDAC codes
	5.3.5.2.11 CDAC dither

	5.3.5.3 Selecting CAPSENSE™ software parameters
	5.3.5.4 Configuring autonomous scan
	5.3.5.5 Multi-channel scanning
	5.3.5.6 Button widget tuning
	5.3.5.7 Touchpad widget tuning

	5.3.6 Manual tuning trade-offs
	5.3.6.1 Reliability
	5.3.6.2 Power consumption and response time

	5.3.7 Tuning debug FAQs
	5.3.7.1 The tuner does not communicate with the device
	5.3.7.2 I am unable to update parameters on my device through the tuner
	5.3.7.3 I can connect to the device but I do not see any raw counts
	5.3.7.4 Difference counts only change slightly (10 to 20 counts) when a finger is placed on the sensor
	5.3.7.5 After tuning the system, I see large amount of radiated noise during testing
	5.3.7.6 My scan time no longer meets system requirements after manual tuning
	5.3.7.7 I am unable to calibrate my system to 85 percent
	5.3.7.8 My slider centroid response is non-linear
	5.3.7.9 My slider segments have a large variation of CP
	5.3.7.10 Raw counts show a level-shift or increased noise when GPIOs are toggled
	5.3.7.11 I am getting a low SNR
	5.3.7.12 I am observing a low CM for my CSX button

	6 Gesture in CAPSENSE™
	6.1 Touch gesture support
	6.2 Gesture groups
	6.3 One-finger gesture implementation
	6.3.1 Tuning the widget
	6.3.2 Selecting predefined gesture
	6.3.3 Firmware implementation with timestamp
	6.3.4 Tuning gesture parameters
	6.3.4.1 Using tuner GUI for tuning gesture parameters
	6.3.4.2 Click
	6.3.4.2.1 Single click
	6.3.4.2.2 Double click

	6.3.4.3 Scroll
	6.3.4.3.1 One-finger scroll
	6.3.4.3.2 One-finger inertial scroll

	6.3.4.4 One-finger flick

	6.4 Two-finger gesture implementation
	6.5 Advanced filters for gestures

	7 Design considerations
	7.1 Firmware
	7.1.1 Low-power design

	7.2 Sensor construction
	7.3 Overlay selection
	7.3.1 Overlay material
	7.3.2 Overlay thickness
	7.3.3 Overlay adhesives

	7.4 PCB layout guidelines
	7.4.1 Sensor CP
	7.4.2 Board layers
	7.4.3 Button design
	7.4.3.1 Self-capacitance button design
	7.4.3.2 Mutual-capacitance button design
	7.4.3.2.1 Fishbone pattern
	7.4.3.2.2 Button design for arbitrary shapes and dimensions
	7.4.3.2.3 General recommendations on Fishbone pattern parameters
	Sensor size
	Button spacing
	Overlay
	Air gap between Tx and Rx electrode
	Number of Rx-prongs
	Tx electrode and Rx electrode width
	Co planar ground
	Tx wall (X-wall and Y-wall width)

	7.4.4 Slider design
	7.4.4.1 Slider-segment shape, width, and Air gap
	7.4.4.2 Dummy segments at the ends of a slider
	7.4.4.3 Deciding slider dimensions
	7.4.4.4 Routing slider segment trace
	7.4.4.5 Slider design with LEDs

	7.4.5 Sensor and device placement
	7.4.6 Trace length and width
	7.4.7 Trace routing
	7.4.8 Crosstalk solutions
	7.4.9 Vias
	7.4.10 Ground plane
	7.4.10.1 Using packages without E-pad
	7.4.10.2 Using packages with E-pad
	7.4.10.3 Using PSoC™ 4 Bluetooth® LE devices

	7.4.11 Power supply layout recommendations
	7.4.12 Layout guidelines for liquid tolerance
	7.4.12.1 Layout guidelines for shield electrode
	7.4.12.2 Layout guidelines for guard sensor
	7.4.12.3 Liquid tolerance with ground ring

	7.4.13 Schematic rule checklist
	7.4.13.1 External capacitors pin selection
	7.4.13.2 Sensor pin selection

	7.4.14 Layout rule checklist

	7.5 Noise in CAPSENSE™ system
	7.5.1 Finger injected noise
	7.5.1.1 Recommendations to reduce the finger injected noise

	7.5.2 VDDA noise
	7.5.2.1 Recommendations to reduce the VDDA noise

	7.5.3 External noise
	7.5.3.1 ESD protection
	7.5.3.1.1 Preventing ESD discharge
	7.5.3.1.2 Redirect
	7.5.3.1.3 ESD protection devices

	7.5.3.2 Electromagnetic compatibility (EMC) considerations
	7.5.3.2.1 Radiated interference and emissions
	Hardware considerations
	Ground plane
	Series resistors on CAPSENSE™ pins
	Series resistors on digital communication lines
	Trace length
	Current loop area
	RF source location

	Firmware considerations
	Device operating voltage
	Device operating frequency
	Sensor-switching frequency
	Pseudo random sense clock
	Spread spectrum sense clock

	Shield signal
	Sensor scan time
	Sense clock source
	Inactive sensor termination

	7.5.3.2.2 Conducted RF noise

	7.6 Effect of grounding
	7.6.1 CSX method
	7.6.1.1 CbodyDG>>Cfs
	7.6.1.2 CbodyDG<<Cfs

	7.6.2 CSD method
	7.6.2.1 AC / DC-powered application
	7.6.2.2 Battery-powered application

	8 CAPSENSE™ Plus
	9 Resources
	9.1 Website
	9.2 Device datasheet
	9.3 Component datasheet / middleware document
	9.4 Technical reference manual
	9.5 Development kits
	9.6 PSoC™ Creator
	9.7 ModusToolbox™
	9.8 Application notes
	9.9 Design support

	10 Glossary
	Revision history

