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About this document 

Scope and purpose 

The CAPSENSE™ design guide explains how to design capacitive touch sensing applications with the 

CAPSENSE™ feature in PSoC™ 4 and PSoC™ 6 MCU device families. The CAPSENSE™ feature offers 

unprecedented signal-to-noise ratio (SNR), best-in-class liquid tolerance, and a wide variety of sensors such as 

buttons, sliders, touchpads, and proximity sensors. This design guide explains the CAPSENSE™ operation, 

CAPSENSE™ design tools, performance tuning of the PSoC™ Creator and ModusToolbox™ CAPSENSE™ 

component and design considerations. This guide also introduces Fifth Generation CAPSENSE™ technology 
which has several advantages over the previous generation devices. 

Different device families are available with CAPSENSE™ feature. If you have not chosen a particular device, or 
are new to capacitive sensing, see the Getting started with CAPSENSE™ design guide. It helps you 

understand the advantages of CAPSENSE™ over mechanical buttons, CAPSENSE™ technology fundamentals, 
and to select the right device for your application. It also directs you to the right documentation, kits, or tools 

to help with your design. 

Intended audience 

This document is primarily intended for engineers who need to become familiar with the CAPSENSE™ design 
principles of PSoC™ 4 and PSoC™ 6 MCU devices.  

http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
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1 Introduction 

1.1 Overview 

Capacitive touch sensors are user interface devices that use human body capacitance to detect the presence of 

a finger on or near a sensor. CAPSENSE™ solutions bring elegant, reliable, and easy-to-use capacitive touch 
sensing functionality to your product. 

This design guide focuses on the CAPSENSE™ feature in the PSoC™ 4 and PSoC™ 6 MCU families of devices. 

These are true programmable embedded system-on-chip, integrating configurable analog and digital 
peripheral functions, memory, radio, and a microcontroller on a single chip. These devices are highly flexible 
and can implement many functions such as ADC, DAC, and Bluetooth® LE in addition to CAPSENSE™, which 

accelerates time-to-market, integrates critical system functions, and reduces overall system cost. 

This guide assumes that you are familiar with developing applications for PSoC™ 4 and PSoC™ 6 MCU using the 
PSoC™ Creator integrated design environment (IDE). If you are new to PSoC™ 4, see AN79953 - Getting started 

with PSoC™ 4 or AN92167 - Getting started with PSoC™ 4 Bluetooth® LE. If you are new to PSoC™ 6 MCU, see 
AN221774 – Getting started with PSoC™ 6 MCU and AN210781 - Getting started with PSoC™ 6 MCU with 
Bluetooth® LE connectivity. If you are new to PSoC™ Creator, see the PSoC™ Creator home page. 

If you are new to ModusToolbox™, see ModusToolbox™ IDE quick start guide. 

This design guide helps you understand: 

• CAPSENSE™ technology in PSoC™ 4 and PSoC™ 6 MCU   

• Design and development tools available for PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™   

• CAPSENSE™ PCB layout guidelines for PSoC 4 and PSoC 6 MCU   

• Performance tuning of PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ component   

• Applications using CAPSENSE™ Plus features such as motor control systems and induction cookers   

1.2 CAPSENSE™ features 

CAPSENSE™ in PSoC™ 4 and PSoC™ 6 MCU has the following features: 

• Supports self-capacitance (CSD) and mutual-capacitance (CSX) based touch sensing on all CAPSENSE™-

capable GPIO pins1. 

• Provides the best in Class SNR allowing high sensitivity that provides high range proximity sensing (up to a 

30-cm proximity-sensing distance) and liquid-tolerant operation (see Liquid tolerance) 

• High-performance sensing across a variety of overlay materials and varied thickness (see CAPSENSE™  

fundamentals, Overlay material, and Overlay thickness) 

• SmartSense auto-tuning technology 

• Pseudo random sequence (PRS) clock source, supports spread spectrum and programmable resistance 

switches for lower electromagnetic interference (EMI) 

• Low power consumption with as low as 1.71 V operation and as low as 150 nA current consumption in 
hibernate mode  

                                                                    
1 To achieve the best CAPSENSE™ performance, follow the recommendations in Sensor pin selection section. 

http://www.cypress.com/?rID=78695&source=an85951
http://www.cypress.com/?rID=78695&source=an85951
http://www.cypress.com/?rID=102504
http://www.cypress.com/an221774
http://www.cypress.com/an210781
http://www.cypress.com/an210781
http://www.cypress.com/an210781
http://www.cypress.com/?id=2494&source=an85951
http://www.cypress.com/ModusToolboxQSG
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The PSoC™ 4100S Max device introduces Fifth-Generation CAPSENSE™ technology (Ratiometric sensing ) and  
has the following additional features when compared to older generations. 

• Improved SNR: Fifth-Generation CAPSENSE™ technology (Ratiometric sensing technology) significantly 
improves noise performance compared to previous generation devices. 

• Improved refresh rate: The better sensitivity of multi sense converter (MSC) requires less time to get 

similar signal as in previous generation therefore is able to achieve higher refresh rate. The two 
independent MSC blocks which can scan the sensors in parallel improve the refresh rate further especially in 
use case where large numbers of sensors to be scanned.  

• Improved CPU bandwidth: Scan supported in both CPU mode and DMA mode. CPU mode is conventional 
interrupt driven mode, while DMA mode is capable of autonomous scanning which reduces the CPU 

bandwidth requirement to 18% compared to previous generation. 

• Improved noise immunity: Rail to rail swing is used as sense voltage, this provides maximum sense voltage 

and provides better immunity. In Fifth-Generation CAPSENSE™ technology  full wave differential sensing is 
used for self-capacitance sensing and this cancels out noise induced from external environment to the 

sensor routings. This sensing technology is also better immune to power supply (VDD) noise.  

1.3 PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ Plus features 

You can create PSoC™ 4 CAPSENSE™ Plus applications that feature capacitive touch sensing and additional 
system functionality. The key features of these devices, in addition to CAPSENSE™ are: 

• Arm® Cortex®-M0/M0+ CPU with single cycle multiply delivering up to 43 DMIPS at 48 MHz 

• 1.71 V – 5.5 V operation over –40 to 85 °C ambient 

• Up to 128 KB of flash (CM0+ has > 2X code density over 8-bit solutions) 

• Up to 16 KB of SRAM 

• Up to 94 programmable GPIOs 

• Independent center-aligned PWMs with complementary dead-band programmable outputs, synchronized 

ADC operation (ability to trigger the ADC at a customer-specifiable time in the PWM cycle), and synchronous 

refresh (ability to synchronize PWM duty cycle changes across all PWMs to avoid anomalous waveforms) 

• Comparator-based triggering of PWM Kill signals (to terminate motor-driving when an over-current 

condition is detected) 

• 12-bit 1 Msps ADC including sample-and-hold (S&H) capability with zero-overhead sequencing allowing the 

entire ADC bandwidth to be used for signal conversion and none used for sequencer overhead. 

• Opamps with comparator mode and SAR input buffering capability 

• Segment LCD direct drive that supports up to four commons 

• SPI/UART/I2C serial communication channels 

• Bluetooth® LE communication compliant with version 4.0 and multiple features of version 4.1 

• Programmable logic blocks, each having eight macrocells and a cascadable data path, called universal 
digital blocks (UDBs) for efficient implementation of programmable peripherals (such as I2S) 

• Controller area network (CAN) 

• Fully-supported PSoC™ Creator design entry, development, and debug environment providing: 

− Design entry and build (comprehending analog routing) 

− Components for all fixed-function peripherals and common programmable peripherals 

− Documentation and training modules 

• Support for porting builds to MDK Arm® environment (previously known as RealView) and others 

• Support for Eclipse integrated development environment (IDE) for ModusToolbox™ 
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The main features of PSoC™ 6 MCU device, in addition to CAPSENSE™ are: 

• Single CPU devices (Arm® Cortex® -M4), dual CPU devices (Arm® Cortex®-M4 and Cortex®-M0+). Support for 
inter-processor communication in hardware. 

• 1.71 V - 3.6 V device operating voltage with user selectable core logic operation at either 1.1 V or 0.9 V 

• Up to 2 MB of flash memory and up to 1 MB of SRAM 

• Up to 78 GPIOs that can be used for analog, digital, CAPSENSE™, or segment LCD functions 

• Programmable analog blocks: Two opamps, configurable PGAs, comparators, 12-bit 1 Msps SAR ADC, 12-bit 
voltage mode DAC 

• Programmable digital blocks, communication interfaces 

• 12 UDBs, 32 TCPWMs configurable as 16-bit/32-bit timer, counter, PWM, or quadrature decoder 

• Up to 13 serial communication block (SCB) configurable as I2C, SPI, or UART interfaces. See the Device 
datasheet for more details. 

• Audio subsystem with one I2S interface and two PDM channels  

• SMIF interface with support for execute-in-place from external quad SPI flash memory and on-the-fly 

encryption and decryption. 

• Bluetooth® Smart connectivity with Bluetooth® LE 5.0 (applicable only to PSoC™ 6 MCU with Bluetooth® LE 
family of devices) 

See AN64846 - Getting started with CAPSENSE™ to select an appropriate CAPSENSE™ device based on your 

requirements. 

1.4 CAPSENSE™ design flow 

Figure 1 illustrates the product design cycle with capacitive sensing; the information in this guide is highlighted 

in green. provides links to the supporting documents for each of the numbered tasks in Figure 1. 

http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
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Figure 1 CAPSENSE™ product design flow 
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 Supporting documentation 

Steps in flowchart 
Supporting documentation 

Name Chapter 

1. Understanding 

CAPSENSE™ 
CAPSENSE™ design guide (This document) 

Getting started with CAPSENSE™ 

Chapter 2 and Chapter 3 

– 

2. Specify requirements 
Getting started with CAPSENSE™  

– 

3. Feasibility study 
PSoC™ 4 datasheet 

PSoC™ 4 Bluetooth® LE datasheet 

PSoC™ 6 MCU datasheet 

– 

AN64846 – Getting started with CAPSENSE™ 

design guide 

AN79953 – Getting started with PSoC™ 4 

AN91267 – Getting started with PSoC™ 4 

Bluetooth® LE 

AN221774 – Getting started with PSoC™ 6 MCU 

– 

4. Schematic design CAPSENSE™ design guide (This document) 
Chapter 7 

5. Layout design CAPSENSE™ design guide (This document) 
Chapter 7 

6. Component 

configuration 

PSoC™ CAPSENSE™ Component datasheet / 

middleware  

– 

CAPSENSE™ design guide (This document) 
Chapter 5 

7. Performance tuning CAPSENSE™ design guide (This document) 
Chapter 5 

8. Firmware design  PSoC™ Component datasheet / middleware  – 

PSoC™ Creator 

Example projects 

– 

http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
http://www.cypress.com/?id=4749&rtID=107&source=an85951
http://www.cypress.com/psoc4ble/
http://www.cypress.com/psoc6ds
http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
http://www.cypress.com/?rID=78695&source=an85951
http://www.cypress.com/?rID=102504
http://www.cypress.com/?rID=102504
http://www.cypress.com/an221774
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Steps in flowchart 
Supporting documentation 

Name Chapter 

Download ModusToolbox™ here.  

See the ModusToolbox™ related documents: 

ModusToolbox™ release notes 

ModusToolbox™ user guide  

ModusToolbox™ quick start guide  

ModusToolbox™ CAPSENSE™ configurator guide 

ModusToolbox™ CAPSENSE™ tuner guide 

PSoC™ Creator to ModusToolbox™ porting guide 

 

9. Programming PSoC™ 
PSoC™ Creator user guide for in-IDE programming 

PSoC™ Programmer home page and MiniProg3 

user guide for standalone programming 

– 

10. Prototype – – 

11. Design validation CAPSENSE™ design guide (This document) 
Chapter 5 

12. Production – – 

 

http://www.cypress.com/modustoolbox
http://www.cypress.com/ModusToolboxReleaseNotes
http://www.cypress.com/ModusToolboxUserGuide
http://www.cypress.com/ModusToolboxQSG
http://www.cypress.com/ModusToolboxCapSenseConfig
http://www.cypress.com/ModusToolboxCapSenseTuner
http://www.cypress.com/PSoCCreatortoModusToolbox
http://www.cypress.com/documentation/other-resources/psoc-creator-user-guide
http://www.cypress.com/documentation/software-and-drivers/psoc-programmer-324
http://www.cypress.com/file/44091/download
http://www.cypress.com/file/44091/download
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2 CAPSENSE™  technology 

Capacitive touch sensing technology measures changes in capacitance between a plate (the sensor) and its 

environment to detect the presence of a finger on or near a touch surface. 

2.1 CAPSENSE™  fundamentals 

A typical CAPSENSE ™ sensor consists of a copper pad of proper shape and size etched on the surface of a PCB. 
A nonconductive overlay serves as the touch surface for the button, as Figure 2 shows. 

 

Figure 2 Capacitive touch sensor 

PCB traces and vias connect the sensor pads to PSoC™ GPIOs that are configured as CAPSENSE™ sensor pins. As 

Figure 3 shows, the self-capacitance of each electrode is modeled as CSX and the mutual capacitance between 
electrodes is modeled as CMX. CAPSENSE™ circuitry internal to the PSoC™ converts these capacitance values 

into equivalent digital counts (see Chapter 3 for details). These digital counts are then processed by the CPU to 

detect touches. 

CAPSENSE™  also requires external capacitor CMOD or CINT for self-capacitance sensing and mutual-capacitance 

sensing. For third- and fourth-generation CAPSENSE™  architecture, a single CMOD capacitor is required for self-

capacitance sensing and CINTA and CINTB capacitors for mutual-capacitance sensing. If shield electrode is 

implemented for liquid tolerance, or for large proximity sensing distance, an additional CTANK capacitor may be 
required. For Fifth-Generation CAPSENSE™  architecture, two CMOD capacitors are required for both self-
capacitance and mutual-capacitance sensing for each channel. These external capacitors are connected 

between a dedicated GPIO pin and ground. Table 34 list the recommended values of the external capacitors. 
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Figure 3 PSoC™ device, sensors, and external capacitors 

The capacitance of the sensor in the absence of a touch is called the parasitic capacitance, CP. CP results from 
the electric field between the sensor (including the sensor pad, traces, and vias) and other conductors in the 

system such as the ground planes, traces, and any metal in the product’s chassis or enclosure. The GPIO and 

internal capacitances of PSoC™ also contribute to the parasitic capacitance. However, these internal 

capacitances are typically very small compared to the sensor capacitance.  

2.1.1 Self-capacitance sensing 

Figure 4 shows how a GPIO pin is connected to a sensor pad by traces and vias for self-capacitance sensing. 
Typically, a ground (GND) hatch surrounds the sensor pad to isolate it from other sensors and traces. Although 

Figure 4 shows some field lines around the sensor pad, the actual electric field distribution is very complex. 

 

Figure 4 Parasitic capacitance 
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When a finger is present on the overlay, the conductive nature and large mass of the human body forms a 
grounded, conductive plane parallel to the sensor pad, as Figure 5 shows. 

 

Figure 5 Finger capacitance 

This arrangement forms a parallel plate capacitor. The capacitance between the sensor pad and the finger is 
shown in Equation 1.  

Equation 1. Finger capacitance 

CF  =    
ε0 εr A

d
  

Where: 

ε0 = Free space permittivity 

εr = Relative permittivity of overlay 

A = Area of finger and sensor pad overlap 

d = Thickness of the overlay 

CF = Finger capacitance.  

CP and CF are parallel to each other because both represent the capacitance between the sensor pin and 

ground. Therefore, the total capacitance CS of the sensor, when the finger is present on the sensor, is the sum of 

CP and CF. 

Equation 2. Total sense capacitance when finger is present on sensor 

CS  =  CP +  CF 

In the absence of touch, CS is equal to CP. 

PSoC™ converts the capacitance CS into equivalent digital counts called raw counts. Because a finger touch 

increases the total capacitance of the sensor pin, an increase in the raw counts indicates a finger touch. Refer to 
the CSD specification in Device datasheet / Component datasheet / middleware document to learn about 
the supported CP range for a given device with which the recommended SNR can be achieved. 
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2.1.2 Mutual-capacitance sensing 

Figure 6 shows the button sensor layout for mutual-capacitance sensing. Mutual-capacitance sensing 
measures the capacitance between two electrodes, transmit (Tx) electrode and receive (Rx) electrode.  

In a mutual-capacitance sensing system, a digital voltage signal switching between VDDIO2 or VDDD3 (if VDDIO is 
not supported by the device) and GND is applied to the Tx pin and the amount of charge received on the Rx pin 

is measured. The amount of charge received on the Rx electrode is directly proportional to the mutual-
capacitance (CM) between the two electrodes.  

When a finger is placed between the Tx and Rx electrodes, the mutual-capacitance decreases to C1
M, as shown 

in Figure 7. Because of the reduction in the mutual-capacitance, the charge received on the Rx electrode also 

decreases. The CAPSENSE™ system measures the amount of charge received on the Rx electrode to detect a 

touch /no touch condition. 

a) Top View    b) Side View 

Rx 

Electrode

Tx Electrode

                        

Overlay

RxTx Tx

RX Electrode
PCB

CM CM
 

Figure 6 Mutual-capacitance sensing working 

 

Overlay

RxTx Tx

RX Electrode
PCB

C
1

M C
1

M  

Figure 7 Mutual-capacitance with finger touch 

                                                                    
 
3 VDDD is the device power supply for digital section. 
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2.2 Capacitive touch sensing method 

PSoC™ uses patented capacitive touch-sensing method CAPSENSE™ sigma delta (CSD) for self-capacitance 

sensing and CAPSENSE™ crosspoint (CSX) for mutual-capacitance scanning. The CSD and CSX touch sensing 
methods provide the industry’s best-in-class Signal-to-noise ratio (SNR). These sensing methods are a 

combination of hardware and firmware techniques.  

2.2.1 CAPSENSE™ sigma delta (CSD) 

Figure 8 shows a simplified block diagram of the CSD method.  

In CSD, each GPIO has a switched-capacitance circuit that converts Cs into an equivalent current. An analog 
MUX (AMUX) selects one of the sensor currents and feeds it into the current to digital converter. The current to 

digital converter is similar to a delta sigma ADC. The output count of the current to digital converter, known as 

raw count, is a digital value that is proportional to the self-capacitance between the electrodes. 

Equation 3. Raw count and sensor capacitance relationship in CSD 

raw count =  GCSD CS              

Where, 

GCSD = Capacitance to digital conversion gain of CSD 

CS = Self-capacitance of the electrode 
 

PSoC 
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GPIO Pin
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CS2

CSN
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Sensor N

Analog 
Multiplexer Capacitance-To-

Digital Converter
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IS2

ISN

Raw Count Touch Status

 

Figure 8 Simplified diagram of CSD method 

Figure 10 illustrates a plot of raw count over time. When a finger touches the sensor, the CS increases from CP to 
CP + CF, and the raw count increases. By comparing the change in raw count to a predetermined threshold, logic 

in firmware decides whether the sensor is active (finger is present). 
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2.2.2 CAPSENSE™ crosspoint (CSX) 

Figure 9 shows the simplified block diagram of the CSX method. 
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Figure 9 Simplified diagram of CAPSENSE™ crosspoint (CSX) method 

With CSX, a voltage on the Tx electrode couples charge on to the RX electrode. This charge is proportional to 
the mutual capacitance between the Tx and Rx electrodes. An analog MUX then selects one of the Rx electrodes 

and feeds it into the current to digital converter. 

The output count of the current to digital converter, 𝐑𝐚𝐰𝐜𝐨𝐮𝐧𝐭𝐂𝐨𝐮𝐧𝐭𝐞𝐫, is a digital value that is proportional to 
the mutual-capacitance between the Rx and Tx electrodes as shown in Equation 4. 

Equation 4. Raw count and sensor capacitance relationship in CSX 

RawcountCounter =  GCSX CM              

Where, 

GCSX = Capacitance to digital conversion gain of mutual capacitance method 

CM = Mutual-capacitance between two electrodes 

Figure 10 illustrates a plot of raw count over time. When a finger touches the sensor, CM decreases from CM to 

C1
M (see Figure 7) hence the counter output decreases. The firmware normalizes the raw count such that the 

raw counts go high when CM decreases. This maintains the same visual representation of raw count between 

CSD and CSX methods. By comparing the change in raw count to a predetermined threshold, logic in firmware 
decides whether the sensor is active (finger is present). The normalized inverted raw count is computed using 

Equation 15. 
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Figure 10 Raw count versus time 

For an in-depth discussion of the PSoC™ 4 and PSoC™ 6 CAPSENSE™ CSD and CSX blocks, see chapter PSoC™ 4 

and PSoC 6™ MCU CAPSENSE™. 

2.3 Signal-to-noise ratio (SNR) 

In practice, the raw counts vary due to inherent noise in the system. CAPSENSE™ noise is the peak-to-peak 
variation in raw counts in the absence of a touch, as Figure 11 shows. 

A well-tuned CAPSENSE system reliably discriminates between the ON and OFF states of the sensors. To 
achieve good performance, the CAPSENSE™ signal must be significantly larger than the CAPSENSE™ noise. SNR 

is defined as the ratio of CAPSENSE™ signal to CAPSENSE™ noise is the most important performance parameter 

of a CAPSENSE™ sensor. 

OFF OFF

ON

Signal

Noise

 

Figure 11 SNR 

In this example, the average level of raw count in the absence of a touch is 5925 counts. When a finger is placed 
on the sensor, the average raw count increases to 6060 counts, which means the signal is 6060 – 5925 = 135 
counts. The minimum value of the raw count in the OFF state is 5912 and the maximum value is 5938 counts. 

Therefore, the CAPSENSE™ noise is 5938 – 5912 = 26 counts. This results in an SNR of 135 / 26 = 5.2. 
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The minimum SNR recommended for a CAPSENSE™ sensor is 5. This 5:1 ratio comes from best practice 
threshold settings, which enable enough margin between signal and noise in order to provide reliable ON/OFF 

operation.  

2.4 CAPSENSE™ widgets 

CAPSENSE™ widgets consist of one or more CAPSENSE™ sensors, which as a unit represent a certain type of 
user interface. CAPSENSE™ widgets are broadly classified into four categories – buttons (zero-dimensional), 
sliders (one-dimensional), touchpads/trackpads (two-dimensional), and proximity sensors (three-

dimensional). Figure 12 shows button, slider, and proximity sensor widgets. This section explains the basic 

concepts of different CAPSENSE™ widgets. For a detailed explanation of sensor construction, see Sensor 
construction. 

Button Sensor Slider Sensor Proximity Sensor
 

Figure 12 Several types of widgets 

2.4.1 Buttons (zero-dimensional) 

CAPSENSE™ buttons replace mechanical buttons in a wide variety of applications such as home appliances, 

medical devices, white goods, lighting controls, and many other products. It is the simplest type of CAPSENSE™ 
widget, consisting of a single sensor. A CAPSENSE™ button gives one of two possible output states: active 

(finger is present) or inactive (finger is not present). These two states are also called ON and OFF states, 
respectively. 

For the self-capacitance (CSD) sensing method, a simple CAPSENSE™ button consists of a circular copper pad 

connected to a PSoC™ GPIO with a PCB trace. The CAPSENSE™ button is surrounded by grounded copper hatch 
that isolates it from other buttons and traces. A circular gap separates the button pad and the ground hatch. 

Each button requires one PSoC™ GPIO. These buttons can be constructed using any conductive material on a 

non-conductive substrate; for example, indium tin oxide on a glass substrate, or silver ink on a non-conductive 
film. Even metallic springs can be used as button sensors; see Sensor construction for more details. 

GND

GPIO Pin0

Button0 Button1 Button2

GPIO Pin1 GPIO Pin2

 

Figure 13 Simple CAPSENSE™ buttons 

For the mutual-capacitance (CSX) sensing method, each button requires one GPIO pin configured as Tx 
electrode and one GPIO pin configured as Rx electrode. The Tx can be shared across multiple buttons, as shown 
in Figure 14. 



  

 

 

Application Note 21 of 229 001-85951 Rev. AA  

   2021-10-01 

 

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide 
  

CAPSENSE™  technology 

  

GND

Rx0 Rx1 Rx2Tx0

Button0 Button1 Button2

 

Figure 14 Simple CAPSENSE™ buttons for mutual-capacitance sensing method 

If the application requires many buttons (for example in a calculator keypad or a QWERTY keyboard), you can 

arrange the CAPSENSE™ buttons in a matrix, as Figure 15 shows. This allows a design to have multiple buttons 

per GPIO. For example, the 16-button design in Figure 15 requires only eight GPIOs. 

 

Figure 15 Matrix buttons based on CSD 

A matrix button design has two groups of capacitive sensors: row sensors and column sensors. The matrix 

button architecture can be used for both self-capacitance (CSD) and mutual-capacitance (CSX) methods.  

In CSD mode, each button consists of a row sensor and a column sensor, as Figure 15 shows. When a button is 
touched, both row and column sensors of that button become active. The CSD-based matrix button should be 

used only if the user is expected to touch one button at a time. If the user touches more than one diagonally 
opposite buttons, the finger location cannot be resolved as Figure 16 shows. This effect is called as ghost 

effect, which is considered an invalid condition. 
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Figure 16 Ghost effect in matrix button based on CSD 

Mutual-capacitance is the recommended sensing method for matrix buttons because this method is not 

affected from the ghost touch phenomena and provides better SNR for high Cp sensors. This is because it 
senses mutual-capacitance formed at each intersection rather than sensing rows and columns as shown in 
Figure 17. Applications that require simultaneous sensing of multiple buttons, such as a keyboard with Shift, 

Ctrl, and Alt keys can use CSX sensing method or you should design the Shift, Ctrl, and Alt keys as individual 

CSD buttons. 

 

Figure 17 Matrix button based on CSX 

Note: Scanning a matrix keypad using CSX sensing method may require a longer overall scan time than 
the CSD sensing method. This is because the CSD sensing method scans rows and columns as 

sensors, while the CSX sensing method scans each intersection as a sensor. 



  

 

 

Application Note 23 of 229 001-85951 Rev. AA  

   2021-10-01 

 

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide 
  

CAPSENSE™  technology 

  

2.4.2 Sliders (one-dimensional) 

Sliders are used when the required input is in the form of a gradual increment or decrement. Examples include 
lighting control (dimmer), volume control, graphic equalizer, and speed control. Currently, the CAPSENSE™ 

Component in PSoC™ Creator and ModusToolbox™ supports only self-capacitance-based sliders. Mutual 
capacitance-based sliders will be supported in future version of component. 

A slider consists of a one-dimensional array of capacitive sensors called segments, which are placed adjacent to 
one another. Touching one segment also results in partial activation of adjacent segments. The firmware 
processes the raw counts from the touched segment and the nearby segments to calculate the position of the 
geometric center of the finger touch, which is known as the centroid position. 

The actual resolution of the calculated centroid position is much higher than the number of segments in a 

slider. For example, a slider with five segments can resolve at least 100 physical finger positions. This high 

resolution gives smooth transitions of the centroid position as the finger glides across a slider. 

In a linear slider, the segments are arranged inline, as Figure 18 shows. Each slider segment connects to a 
PSoC™ GPIO. A zigzag pattern (double chevron) is recommended for slider segments. This layout ensures that 

when a segment is touched, the adjacent segments are also partially touched, which aids estimation of the 
centroid position. 

Area contracted by the finger

     GND       0        1        2        3          4          5    GND
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Figure 18 Linear slider 

Radial sliders are similar to linear sliders except that radial sliders are continuous. Figure 19 shows a typical 

radial slider. 

Area contacted by finger
 

Figure 19 Radial slider 
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2.4.3 Touchpads / Trackpads (two-dimensional) 

A touchpad (also known as trackpad) has two linear sliders arranged in an X and Y pattern, enabling it to locate 
a finger’s position in both X and Y dimensions. Figure 20 shows a typical arrangement of a touchpad sensor. 

Similar to the matrix buttons, touchpads can also be sensed using either CSD or CSX sensing method.  

CSD-based touchpads suffer from ghost touches, so it supports only single-point touch applications. 

CSX touchpads can support multi-point touch applications, but these may need more scanning time compared 

to CSD touchpad because this method scans each intersection rather than rows and columns.  

 

Figure 20 Touchpad sensor arrangement 

2.4.4 Proximity (three-dimensional) 

Proximity sensors detect the presence of a hand in the three-dimensional space around the sensor. However, 
the actual output of the proximity sensor is an ON/OFF state similar to a CAPSENSE™ button. Proximity sensing 
can detect a hand at a distance of several centimeters to tens of centimeters depending on the sensor 

construction. Self capacitance is the recommended method of sensing for a proximity application.  

Proximity sensing requires electric fields that are projected to much larger distances than buttons and sliders. 

This demands a large sensor area. However, a large sensor area also results in a large parasitic capacitance CP, 
and detection becomes more difficult. This requires a sensor with high electric field strength at large distances 

while also having a small area. Figure 21 shows a proximity sensor using a trace with a thickness of 2-3 mm 

surrounding the other sensors. 

Proximity Sensor

 

Figure 21 Proximity sensor 

You can also implement a proximity sensor by ganging other sensors together. This is accomplished by 

combining multiple sensor pads into one large sensor using firmware. The disadvantage of this method is high 
parasitic capacitance. See the Component datasheet / middleware document for details on maximum 
parasitic capacitance supported by a given device. 

See AN92239 proximity sensing with CAPSENSE™ and the proximity sensing section in Getting started with 
CAPSENSE™ design guide to learn more about proximity sensors. 

http://www.cypress.com/documentation/application-notes/an92239-proximity-sensing-capsense
http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
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2.5 Liquid tolerance 

Capacitive sensing is used in a variety of applications such as home appliances, automotive, and industrial 
applications. These applications require robust capacitive-sensing operation even in the presence of mist, 

moisture, water, ice, humidity, or other liquids. In a capacitive-sensing application design, false sensing of 
touch or proximity detection may happen due to the presence of a film of liquid or liquid droplets on the sensor 
surface, due to the conductive nature of some liquids. CSD sensing method can compensate for variation in raw 
count due to these causes and provide a robust, reliable, capacitive sensing application operation. 

 

Figure 22 Liquid-tolerant CAPSENSE™-based touch user interface in washing machine 

• To compensate for changes in raw count due to mist, moisture, and humidity changes, the CAPSENSE™ 

sensing method continuously adjusts the baseline of the sensor to prevent false triggers. 

• To prevent sensor false triggers due to a liquid flow, you should implement a Guard sensor as  Figure 23 

shows. The Driven-shield signal and shield electrode can be used to detect the presence of a streaming 
liquid and ignore the status or stop the sensing from rest of the sensors as long as the liquid flow is present.  

• Note that the guard sensor itself is just another self-capacitance sensor; even though you could implement 

it around mutual-capacitance sensors also for liquid flow tolerance. PSoC™ devices allow implementation 

of such self-capacitance sensors and mutual-capacitance sensors together in the same design. 

• To compensate for changes in raw count due to liquid droplets for self-capacitance sensing, you can 
implement a Driven-shield signal and shield electrode as Figure 23 shows. When a shield electrode is 

implemented, CAPSENSE™ reliably works and reports the sensor ON/OFF status correctly, even when liquid 

droplets are present on the sensor surface. To prevent sensor false triggers due to liquid droplets for 
mutual-capacitance sensing, you can use both the sensing methods i.e., mutual capacitance and self-
capacitance with Driven-shield signal and shield electrode on the same set of sensors as Using self-
capacitance sensing for liquid tolerance of mutual-capacitance sensors explains. 

In summary, if your application requires tolerance to liquid droplets, implement a Driven-shield signal and 
shield electrode. If your application requires tolerance to streaming liquids along with liquid droplets, 

implement a Driven-shield signal and shield electrode and a Guard sensor as shown in Figure 23. Follow the 
schematic and layout guidelines explained in the Layout guidelines for liquid tolerance section to construct 
the shield electrode and guard sensor respectively. 
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Figure 23 Shield electrode (SH) and guard sensor (GUARD) connected to CAPSENSE™ controller 

2.5.1 Liquid tolerance for self-capacitance sensing 

2.5.1.1 Effect of liquid droplets and liquid stream on a self-capacitance sensor 

To understand the effect of liquids on a CAPSENSE™ sensor, consider a CAPSENSE™ system in which the hatch 
fill around the sensor is connected to ground, as Figure 24(a) shows. The hatch fill when connected to a GND 

improves the noise immunity of the sensor. Parasitic capacitance of the sensor is denoted as CP in Figure 24(b). 
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560 ΩCAPSENSE  

Controller
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Controller

560 Ω

CP

(a) (b)

 

Figure 24 Typical CAPSENSE™ system layout 

As shown in Figure 25, when a liquid droplet falls on the sensor surface, due to its conductive nature it provides 

a strong coupling path for the electric field lines to return to ground; this adds a capacitance CLD in parallel to 
CP. This added capacitance draws an additional charge from the AMUX bus as explained in GPIO cell 

capacitance to current converter resulting in an increase in the sensor raw count. In some cases (such as salty 
water or water containing minerals), the increase in raw count when a liquid droplet falls on the sensor surface 

may be equal to the increase in raw count due to a finger touch, as Figure 25 shows. In such a situation, sensor 

false triggers might occur.  
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Figure 25 Capacitance added by liquid droplet when the Hatch Fill is connected to GND 

CP = Sensor parasitic capacitance 

CLD = Capacitance added by the liquid droplet 
 

 

Figure 26 Effect of liquid droplet when the Hatch Fill around the sensor is connected to GND 

To nullify the effect of capacitance added by the liquid droplet to the CAPSENSE™ circuitry, you should drive 

the hatch fill around the sensor with the driven-shield signal.  

As Figure 27 shows, when the hatch fill around the sensor is connected to the driven-shield signal and when a 
liquid droplet falls on the touch interface, the voltage on both sides of the liquid droplet remains at the same 

potential. Because of this, the capacitance, CLD, added by the liquid droplet does not draw any additional 

charge from the AMUX bus and hence the effect of capacitance CLD is nullified. Therefore, the increase in raw 
count when a water droplet falls on the sensor will be very small, as Figure 28 shows.  
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Figure 27 Capacitance added by liquid droplet when the hatch fill around the sensor is connected to 

shield 
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CS = Sensor parasitic capacitance 

CSH = Capacitance between the sensor and the hatch fill 

CHG = Capacitance between the hatch fill and ground 

CLD = Capacitance added by the liquid droplet  
 

 

Figure 28 Effect of liquid droplet when the hatch fill around the sensor is connected to the driven-

shield 

Figure 26 shows how a sensor may false trigger in presence of a liquid, if hatch fill is connected to ground. Note 
however, that the same is not true for all cases. For example, spring sensors, which are inherently more liquid 

tolerant than sensors etched on PCB surface. As Figure 29 shows, due to the large airgap between the liquid 

drop and the hatch fill, the capacitance CLD between the liquid drop and grounded hatch pattern on the PCB 
would be very low so as not to cause any false triggers. If required, the hatched pattern on the PCB can still be 
connected to a driven shield electrode to further nullify the effect of CLD and have an improved liquid tolerance.  

 

Figure 29 Capacitance added by liquid droplet in spring sensor 
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2.5.1.2 Driven-shield signal and shield electrode 

The driven-shield signal is a buffered version of the sensor-switching signal, as Figure 30 shows. The driven-
shield signal has the same amplitude, frequency, and phase as that of sensor switching signal. When the hatch 

fill around the sensor is connected to the driven shield signal, it is referred as shield electrode.  

Buffer

Sensor Switching 

Signal

Driven Shield 

Signal

In-Phase Sensor and 

Shield Signal

 

Figure 30 Driven shield signal 

Shield electrode can be used for following purposes: 

• To implement liquid-tolerant CAPSENSE™ designs: Shield electrode helps in making CAPSENSE™ designs 

liquid-tolerant as explained above. 

• To improve proximity sensing distance in presence of floating or grounded conductive objects: A shield 

electrode, when placed between the proximity sensor and a floating or a grounded conductive object, 

reduces the effect of these objects on the proximity-sensing distance and helps in achieving large proximity-

sensing distance. See the “Proximity Sensing” section in the Getting started with CAPSENSE™ design 

guide for more details. 

• To reduce the parasitic capacitance of the sensor: When a CAPSENSE™ sensor has a long trace, the CP of the 
sensor will be very high because of the increased coupling of sensor electric field lines from the sensor trace 

to the surrounding ground. By implementing a shield electrode, the coupling of electric field lines to ground 
is reduced, which results in reducing the CP of the sensor. 

See Layout guidelines for shield electrode for layout guidelines of shield electrode. 

2.5.1.3 Guard sensor 

When a continuous liquid stream is present on the sensor surface, the liquid stream adds a large capacitance 
(CST) to the CAPSENSE™ sensor. This capacitance may be several times larger than CLD. Because of this, the 
effect of the shield electrode is completely masked, and the sensor raw counts will be same as or even higher 

than a finger touch. In such situations, a guard sensor is useful to prevent sensor false triggers.  

A guard sensor is a copper trace that surrounds all the sensors on the PCB, as Figure 31 shows. A guard sensor 
is similar to a button sensor and is used to detect the presence of streaming liquids. When a guard sensor is 

triggered, the firmware should disable the scanning of all other sensors except the guard sensor to prevent 

sensor false triggers. 

Note: The sensors are not scanned, or the sensor status is ignored when the guard sensor is triggered; 

therefore, touch cannot be detected when there is a liquid stream on the touch surface. 

http://www.cypress.com/go/AN64846
http://www.cypress.com/go/AN64846
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Figure 31 Measurement with a liquid stream 

See Layout guidelines for guard sensor for PCB layout guidelines for implementing a guard sensor. 

If there is no space on the PCB for implementing a guard sensor, the guard sensor functionality can be 
implemented in the firmware. For example, you can use the ON/OFF status of different sensors to detect a 

liquid stream depending on the use case, such as follows: 

• When there is a liquid stream, more than one button sensor will be active at a time. If your design does not 

require multi-touch sensing, you can detect this and ignore the sensor status of all the button sensors to 
prevent false triggering. 

• In a slider, if the slider segments which are turned ON are not adjacent segments, you can reset the slider 
segments status or ignore the slider centroid value that is calculated. 

• Likewise, you could create your own custom algorithm to detect the presence of streaming liquids and 
ignore the sensor status during the time a liquid is present on the touch surface. 

Note:  The sensors are not scanned, or the sensor status is ignored when the guard sensor is triggered; 
therefore, touch cannot be detected when there is a liquid stream on the touch surface. 
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2.5.2 Liquid tolerance for mutual-capacitance sensing 

2.5.2.1 Effect of liquid droplets and liquid stream on a mutual-capacitance 

sensor 

Mutual-capacitance buttons often have a grounded hatch fill around the sensors for improved noise immunity. 

If a liquid droplet falls over the sensor while covering some part of the grounded hatch, the mutual-capacitance 
decreases similar to the effect of placing a finger on the sensor. This decrease in mutual-capacitance causes an 
increase in raw count as explained in CAPSENSE™ CSX sensing method (third- and fourth-generation) in and 

as shown in the Figure 32. The amount of increase in the raw count depends on the size and characteristics of 

the liquid drop.  

However, mutual-capacitance increases if the liquid droplet covers just the Tx and Rx electrode and does not 

spread over the grounded hatch. This causes a decrease in raw count as shown in Figure 32. This decrease in 
raw count may cause the baseline reset due to Low baseline reset. Once the liquid drop is removed, the raw 
count would rise while the baseline may remain at the lower value, resulting in a difference signal which may 

cause the sensor to false trigger. 

  
Figure 32 Effect of liquid droplet on CSX sensor when the Hatch Fill around the sensor is connected 

to ground 

2.5.2.2 Using self-capacitance sensing for liquid tolerance of mutual-

capacitance sensors 

CAPSENSE™ senses the self-capacitance of Tx and Rx nodes of a mutual-capacitance sensor. This ability of 

scanning the sensor using both CSD and CSX modes could be used to avoid false triggers due to the presence of 

liquid drops on a mutual capacitance sensor. See the code example PSoC™ 4 hybrid sensing using 
CAPSENSE™ to understand how to sense a mutual-capacitance button with both CSD as well as CSX sensing 
method. 

To achieve liquid tolerance, you need to scan the Rx electrode of the sensor with the CSD sense method. While 

scanning the Rx electrode as a CSD sensor, ensure that you enable the shield electrode, and connect the Tx pin 

of the mutual-capacitance sensor to the driven shield signal. You can use the low-level API function 
CapSense_SetPinState() to connect the Tx pin of the mutual-capacitance sensor to the shield electrode 

before calling the CapSense_ScanAllWidgets() API function that scans the Rx electrode as a CSD sensor as 
shown below: 

Liquid droplet 
on the Tx and 

grounded shield 

hatch 

Liquid drop 

present on the 

Tx electrode 

and Rx 

electrode only  

Liquid drop 

removed from 

the Tx electrode 

and Rx 

electrode 

Finger Touch Finger touch 
when Liquid 

drop on the Tx 

electrode and 

Rx electrode 

only 

https://www.cypress.com/documentation/code-examples/ce224899-psoc-4-hybrid-sensing-using-capsense
https://www.cypress.com/documentation/code-examples/ce224899-psoc-4-hybrid-sensing-using-capsense
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CapSense_SetPinState(CapSense_BUTTON1_WDGT_ID,CapSense_BUTTON1_TX0_ID,CapSens

e_SHIELD); 

CapSense_ScanAllWidgets(); 

From sections 2.5.1 and 2.5.2 you understood the effect of liquid drop on the CSD and CSX button respectively. 
By utilizing the difference in their response to the liquid drop, you can create a firmware logic to achieve a 
liquid-tolerant mutual-capacitance sensor. The effect of presence of the liquid drop on the CSD and CSX scan 
results is summarized in Figure 33. 

 
Figure 33 Effect of water drop on the CSX sensor pattern scanned with CSD and CSX methods 

Where Figure 33 shows the effect of the water drop on the CSX sensor pattern surrounded by hatch fill when 
scanned using this method. The regions in Figure 33 represent the following: 

1. Finger touch 

2. Liquid droplet on the Tx line and grounded shield hatch  

3. Liquid drop present on the Tx and Rx electrodes only  

4. Finger touch when a liquid drop is on the Tx and Rx electrodes only  

5. Liquid drop removed from the Tx and Rx electrodes  

The changes in raw count as shown in Figure 33 can be used in the firmware to reset the baseline of the CSX 

sensor to nullify the effect of liquid drops. The button status should be ON state for Region 1, 4, and OFF state in 

other regions; additionally, the baseline of the CSX button must be re-initialized in Region 3 and Region 5. The 

baseline of the sensor could be reset by using the CapSense_InitializeWidgetBaseline() API 

function as shown below:  

CapSense_InitializeWidgetBaseline(CapSense_CSX_BUTTON_WDGT_ID); 

See the Component datasheet / middleware document or more details on using this API; see Selecting 
CAPSENSE™ software parameters to learn about the baseline of the sensor. 

 

 

Sensing with 

CSD method 

Sensing with 

CSX method 
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2.5.3 Effect of liquid properties on liquid-tolerance performance 

In certain applications, the CAPSENSE™ system has to work in the presence of a variety of liquids such as soap 
water, sea water, and mineral water. In such applications, it is always recommended to tune the CAPSENSE™ 

parameters for sensors by considering the worst-case signal due to liquid droplets. To simulate the worst-case 
conditions, it is recommended that you test the liquid-tolerance performance of the sensors with salty water by 
dissolving 40 grams of cooking salt (NaCl) in one liter of water. Tests were done using soapy water; the results 
show that the effect of soapy water is similar to the effect of salty water. Therefore, if the tuning is done to 

reject salty water, the CAPSENSE™ system will work even in the presence of soapy water. 

In applications such as induction cooktops, there are chances of hot water spilling on to the CAPSENSE™ touch 

surface. To determine the impact of the temperature of a liquid droplet on CAPSENSE™ performance, droplets 

of water at different temperatures were poured on a sensor and the corresponding change in raw counts was 

monitored. Experiment shows that the effect of hot liquid droplets is same as that of the liquid at room 

temperature as Figure 34 shows. This is because the hot liquid droplet cools down immediately to room 
temperature when it falls on the touch surface. If hot water continuously falls on the sensor and the 

temperature of the overlay rises because of the hot water, the increase in raw count due to the increase in 
temperature is compensated by the Baseline update algorithm, thereby preventing any false triggering of the 

sensors.  
 

 

Figure 34 Raw count variation versus water temperature 
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3 PSoC™ 4 and PSoC 6™ MCU CAPSENSE™ 

This chapter explains how CAPSENSE™ CSD and CSX (Third, Fourth, and Fifth generations) is implemented in 

the PSoC™ 4 and PSoC™ 6 MCU. See Capacitive touch sensing method to understand the basic principles of 
CAPSENSE™. A basic knowledge of the PSoC™ device architecture is a prerequisite for this chapter. If you are 
new to PSoC™ 4, see AN79953 - Getting started with PSoC 4™ or AN91267 - Getting started with PSoC™ 4 
Bluetooth® LE; for PSoC™ 6 MCU, see AN221774 - Getting started with PSoC™ 6 MCU. 

You can skip this chapter if you are using the automatic tuning feature (SmartSense) of the Component. See the 

CAPSENSE™ performance tuning chapter for details.  

The PSoC™ 4 family of devices has three different CAPSENSE™ architectures. Table 2 explains the differences 

between the Third, Fifth-Generation CAPSENSE architecture. 

3.1 CAPSENSE™ generations in PSoC™ 4 and PSoC™ 6 

Table 2  lists the main differences in the CAPSENSE™ architecture. 

 Comparison of CAPSENSE™ architecture for CSD and CSX 

Feature 
Third-generation 

CAPSENSE™ 

Fourth-

generation 

CAPSENSE™ 

Fifth-generation 

CAPSENSE™ 
Improvement impact Conditions 

SNR 5:1 6.5:1 48:1 

Higher SNR implies 

better sensitivity, i.e. 

ability to sense smaller 

signal. 

VDD = 5V; 

No firmware filter; 

Cp ~= 33 pF;  

Cf = 0.1 pF 

Sensing mode 
Self-cap and 

Mutual-cap modes 

Self-cap, 

Mutual-cap 

modes and 

ADC modes 

Self-cap and 

Mutual-cap 

modes 

– – 

Sensor capacitance 

parasitic range 
5 pF – 45 pF 5 pF – 200 pF 2 pF – 200 pF 

Greater Cp range 

implies higher 

flexibility in PCB layout 

routing and ability to 

sense with very 

short/long sensor 

traces, and for different 

PCB materials (for 

example: FFC and so 

on). 

– 

Typical sense signal 

needed 
100 fF 100 fF 

15 fF for CSD-RM 

10 fF for CSX-RM 

Smaller sense signal 

required, implying 

support for thicker 

overlays, higher 

proximity range, 

smaller sensor size and 

so on. 

VDD = 5V; 

No firmware filter; 

Cp ~= 33 pF; 

SNR = 5:1; 

Noise floor (pk-pk) – – 
500 aF for CSD-RM 

100aF for CSX-RM 

Same as SNR.  

Higher SNR or lower 

noise floor implies 

ability to sense smaller 

signal. 

VDD - 5V; 

Cp ~= 33 pF;  

CM = 5 pF 

Overlay thickness 

supported 
Up to 5 mm Up to 5 mm Upto 18 mm 

Supports designs with 

thicker overlay. 

10 mm CSD button; 

Acrylic overlay; 

SNR = 5:1; 

Cp ~= 22 pF; 

http://www.cypress.com/?rID=78695&source=an85951
http://www.cypress.com/?rID=102504
http://www.cypress.com/?rID=102504
https://www.cypress.com/documentation/application-notes/an221774-getting-started-psoc-6-mcu
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Feature 
Third-generation 

CAPSENSE™ 

Fourth-

generation 

CAPSENSE™ 

Fifth-generation 

CAPSENSE™ 
Improvement impact Conditions 

Refresh rate – 22 Hz 242 Hz 

Faster refresh rate 

enables fast gestures 

and taps detections on 

applications such as 

large trackpad and 

long sliders or large 

number of button 

sensors with single 

device, and so on. 

7  5 CSX touchpad; 

Acrylic overlay 3mm 

thickness; 

SNR = 10:1; 

Finger Size = 8 mm; 

CPU bandwidth 

requirement 

Completely CPU driven. 

CPU is required for 

initialization and 

sequencing the 

sensors. 

40% 

Sequencer4 

takes care of 

initialization, 

configuration 

and scanning 

of sensors. 

CPU needed 

for 

sequencing 

through each 

sensor. 

7% 

Completely 

autonomous. 

Reduced CPU usage for 

sensing, frees CPU to 

perform other 

peripheral operations 

and act as a central 

controller in an 

application. 

10x8 CSX touchpad; 

Scan clock = 1MHz; 

No of sub-

conversions = 70; 

Refresh rate = 100Hz; 

Emission control 

options. 
PRS PRS, SSC PRS, SSC – – 

Noise 

immu

nity  

Sense Voltage 

(Vref) 
1.2V 1.2V-2.8V. Rail to Rail 

Higher the sense 

voltage, higher the 

noise immunity. 

– 

Differential 

Sensing 
Mutual-Cap sensing 

Mutual-Cap 

sensing 

Mutual-Cap and 

Self-Cap sensing 

Differential sensing 

cancels out noise 

induced from external 

environment through 

CMOD. 

VDD noise 

impact 
Yes Yes No 

VDD noise have minimal 

affect on fifth 

generation CAPSENSE™ 

operation. 

Sense 

clock 

freque

ncy 

Self-Cap 45 kHz – 6 MHz 
45 kHz – 6 MH

z 
45 kHz – 6 MHz 

Higher sense clock 

frequency means faster 

scan for low Cp sensors. 

This provides ability to 

support faster taps or 

gestures, or for a given 

refresh rate, ability to 

implement multiple 

firmware filters for 

better immunity. 

– 

Mutual-Cap 45 kHz – 300 kHz 
45 kHz – 3 MH

z 
45 kHz – 6 MHz 

Multi-channel support No No Yes 

Provides ‘n’ times 

increased speed of 

scanning for the same 

number of sensors, if 

‘n’channels are used. 

– 

Shield Cp -- -- 1.2nF – – 

Device family 
PSoC™ 4100/4200 

PSoC™ 4100M/4200M 

PSoC™ 4000 

PSoC™ 4000S 
PSoC™ 4100S Max – – 

                                                                    
4 The hardware state machine is a logic which controls the CAPSENSE™ block and sensor scanning. 
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Feature 
Third-generation 

CAPSENSE™ 

Fourth-

generation 

CAPSENSE™ 

Fifth-generation 

CAPSENSE™ 
Improvement impact Conditions 

PSoC™ 4100L/4200L 

PSoC™ 4100BL/4200BL 

PSoC™ 4100S 

PSoC™ 4100S 

Plus 

PSoC™ 6 

3.2 CAPSENSE™ CSD sensing method (third- and fourth-generation) 

Figure 35 illustrates the CAPSENSE™ block that scans CAPSENSE™ sensors in CSD sensing mode.  
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Figure 35 CAPSENSE™ CSD sensing 

As explained in Capacitive touch sensing method, this block works by first converting the sensor capacitance 
into an equivalent current. An analog multiplexer then selects one of the currents and feeds it into the current-

to-digital converter. This current-to-digital converter consists of a sigma-delta converter, which controls the 
modulation IDAC for a specific period, the total current sourced or sinked by the IDACs is the same as the total 

current sinked or sourced by the sensor capacitance. The digital count output of the sigma-delta converter is 
an indicator of the sensor capacitance and is called a raw count. This block can be configured in either IDAC 

Sourcing mode or IDAC Sinking mode. In the IDAC Sourcing mode, the IDACs source current to AMUXBUS while 
the GPIO cells sink current from AMUXBUS. In the IDAC Sinking mode, the IDACs sink current from AMUXBUS 
while the GPIO cells source current to AMUXBUS. 
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3.2.1 GPIO cell capacitance to current converter 

In the CAPSENSE™ CSD system, the GPIO cells are configured as switched-capacitance circuits that convert 
sensor capacitances into equivalent currents. Figure 36 shows a simplified diagram of the GPIO cell structure. 

GPIO 

Pin

VDDD

AMUXBUS

 A

AMUXBUS

B

SW1

SW2

SW3

SW4

 

Figure 36 GPIO cell structure 

PSoC™ 4 and PSoC™ 6 devices consist of two AMUX buses: AMUXBUS A is used for CSD sensing and AMUXBUS B 

is used for CAPSENSE™ CSD shielding.The GPIO switched-capacitance circuit has two possible configurations: 

source current to AMUXBUS A or sink current from AMUXBUS A.  

3.2.2 IDAC sourcing mode 

In the IDAC Sourcing mode, the GPIO cell sinks current from the AMUXBUS A through a switched capacitor 
circuit as Figure 37 shows.  

SW1

SW3

CS

AMUXBUS A

RSeries

ISW

ISW

RS

AMUXBUS A

ISW

 

Figure 37 GPIO cell sinking current from AMUXBUS A 

Two non-overlapping, out-of-phase clocks of frequency FSW control the switches SW1 and SW3 as Figure 38 

shows. The continuous switching of SW1 and SW3 forms an equivalent resistance RS, as Figure 37 shows.  
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Figure 38 SW1 and SW3 switch in non-overlapping manner 

If the switches operate at a sufficiently low frequency FSW, such that time TSW/2 is sufficient to fully charge the 

sensor to VREF and fully discharge it to ground, as Figure 38 shows, the value of the equivalent resistance RS is 
given by Equation 5. 

Equation 5. Sensor equivalent resistance 

RS =  
1

CS FSW
  

Where, 

CS = Sensor capacitance  

FSW = Frequency of the sense clock 

The sigma-delta converter maintains the voltage of AMUXBUS A at a constant VREF (this process is explained in 

Sigma-delta converter. Figure 39 shows the resulting voltage waveform across CS. 
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SW3 CLOSED

SW1 CLOSED

SW3 OPEN

 

Figure 39 Voltage across sensor capacitance 

Equation 6 gives the value of average current taken from AMUXBUS A. 

Equation 6. Average current sinked from AMUXBUS A to GPIO through CAPSENSE™ sensor (ICS) 

ICS  = CS FSWVREF 
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3.2.3 IDAC sinking mode  

In the IDAC sinking mode, the GPIO cell sources current to the AMUXBUS A through a switched capacitor circuit 
as Figure 40 shows. Figure 41 shows the voltage waveform across the sensor capacitance.  

Because this mode charges the AMUXBUS A directly through VDDD, it is more susceptible to power supply noise 
compared to the IDAC sourcing mode. Hence, it is recommended to use this mode with an LDO or a very stable 

and quiet VDDD. 

SW2

SW3

CS

AMUXBUS A

RSeries

ISW

ISW

RS

AMUXBUS A

ISW

VDDD VDDD

ISW

 

Figure 40 GPIO cell sourcing current to AMUXBUS A 
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Figure 41 Voltage across sensor capacitance 

Equation 7 provides the value of average current supplied to AMUXBUS A. 

Equation 7. Average current sourced to AMUXBUS A from GPIO through CAPSENSE™ sensor (ICS) 

ICS  = CS FSW (VDDD − VREF) 
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3.2.4 CAPSENSE™ clock generator 

The CAPSENSE™ clock generator block generates the sense clock FSW, and the modulation clock FMOD, from the 
high-frequency system resource clock (HFCLK) or peripheral clock (PERI) depending on the PSoC™ device 

family as shown in Figure 35.  

3.2.4.1 Sense clock 

The sense clock, also referred to as the switching clock, drives the non-overlapping clocks to the GPIO cell 

switched capacitor circuits for the GPIO cell capacitance to current converter.  
Sense clock can be sourced from three options: direct, 8-bit PRS, and 12-bit PRS. Some  
PSoC™ 4 and PSoC™ 6 MCU parts also support additional spread spectrum clock (SSCx) modes. For more details 

on the supported modes for PSoC™ device, see the Component datasheet / middleware document. 

Direct clock is a constant frequency sense clock source. When you chose this option, the sensor pin switches 
with a constant frequency clock with frequency as specified in the CAPSENSE™ component configuration 

window.   

PRS clock implies that the sense clock is driven from a PRS block, which can generate either 8-bit or 12-bit PRS. 
Use of the PRS clock spreads the sense clock frequency over a wide frequency range by dividing the input clock 
using a PRS. 

SSCx also spreads the sense clock frequency. It provides better noise immunity and reduces radiated 

electromagnetic emissions. 

See Manually tuning hardware parameters for details on the clock source and frequency selection guidelines. 

3.2.4.2  Modulator clock 

The modulation clock is used by the Sigma-delta converter. This clock determines the sensor scan time based 
on Equation 8 and Equation 9. 

Equation 8. Sensor scan time 

Sensor scan time =  Hardware scan time + Sensor Initialization time 

 

Equation 9. Hardware scan time 

Hardware scan time =  
(2Resolution − 1)

Modulator Clock Frequency 
⁄  

Where, 

Resolution =  Scan resolution 

Sensor Initialization time = Time taken by the sensor to write to the internal registers and initiate a scan.  
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3.2.5 Sigma-delta converter 

The sigma-delta converter converts the input current to a corresponding digital count. It consists of a sigma-
delta converter and two current sourcing/sinking digital-to-analog converters (IDACs) called modulation IDAC 

and compensation IDAC as Figure 35 shows. 

The sigma-delta converter uses an external integrating capacitor, called modulator capacitor CMOD, as Figure 35 

shows.  Sigma-delta converter controls the modulation IDAC current by switching it ON or OFF corresponding 
to the small voltage variations across CMOD to maintain the CMOD voltage at VREF. The recommended value of CMOD 
is listed in Table 34. 

The sigma-delta converter can operate in either IDAC sourcing mode or IDAC sinking mode. 

• IDAC sourcing mode: In this mode, the GPIO cell capacitance to current converter sinks current from CMOD 

through AMUXBUS A, and the IDACs then source current to AMUXBUS A to balance its voltage. 

• IDAC sinking mode: In this mode,the  GPIO cell capacitance to current converter sources current from 

CMOD to AMUXBUS A and the IDACs sink current through AMUXBUS A to balance its voltage. 

In both the above-mentioned modes, the sigma delta converter can operate in either single IDAC mode or dual 
IDAC mode: 

• In the single IDAC mode, the modulation IDAC is controlled by the sigma-delta converter; the compensation 

IDAC is always OFF. 

• In the dual IDAC mode, the modulation IDAC is controlled by the sigma-delta converter; the compensation 
IDAC is always ON. 

In the single IDAC mode, if ‘N’ is the resolution of the sigma-delta converter and IMOD is the value of the 

modulation IDAC current, the approximate value of raw count in the IDAC Sourcing mode is given by Equation 

10. 

Equation 10. Single IDAC sourcing raw count 

raw count = (2N − 1)
 VREF FSW

IMOD
 CS 

Similarly, the approximate value of raw count in the IDAC sinking mode is given by Equation 11. 

Equation 11. Single IDAC sinking raw count 

raw count = (2N − 1)
  (VDD −  VREF) FSW

IMOD
 CS 

In both cases, the raw count is proportional to sensor capacitance CS. The raw count is then processed by the 

CAPSENSE™ CSD Component firmware to detect touches. The hardware parameters such as IMOD, ICOMP, and FSW, 
and the software parameters, should be tuned to optimum values for reliable touch detection. For an in-depth 
discussion of the tuning, see CAPSENSE™ performance tuning. 

In the dual IDAC mode, the compensation IDAC is always ON. If ICOMP is the compensation IDAC current, the 
equation for the raw count in the IDAC sourcing mode is given by Equation 12. 

Equation 12. Dual IDAC sourcing raw count 

raw count = (2N − 1)
 VREF FSW

IMOD
 CS − (2N − 1)

 ICOMP

IMOD
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Raw count in the IDAC sinking mode is given by Equation 13. 

Equation 13. Dual IDAC sinking raw count 

raw count = (2N − 1)
  (VDD −  VREF) FSW

IMOD
 CS − (2N − 1)

 ICOMP

IMOD
    

Note that raw count values are always positive. It is thus imperative to ensure that ICOMP is less 

than  (VDD −  VREF) 𝐶𝑆 FSW for the IDAC sinking mode and ICOMP is less than CS FSWVREF for the IDAC Sourcing 
mode. Equation 13 does not hold true if  ICOMP > 𝑉REF 𝐶𝑆 FSW and Equation 12 does not hold true 

if  ICOMP > (𝑉DD −  VREF) 𝐶𝑆 FSW; in these cases, raw counts will be zero. 

The relation between the parameters shown in the above equation to the CAPSENSE™ Component parameters 
is listed in Table 3. 

 Relationship between CAPSENSE™ raw count and CAPSENSE™ hardware parameters 

Sl. No. Parameter Description Comments 

1 N Scan resolution 

Scan resolution is configurable from 6-bit to 16-bit.  

See Component datasheet / middleware document for 

details. 

2 VREF N/A 

The VREF value is 1.2 V or configurable between 0.6 V to VDDA-

0.6 V depending on the PSoC™ device family.  

See Component datasheet / middleware document for 

details. 

3 FSW 

Sense clock 

frequency 
Sense clock frequency and sense clock source decide the 

frequency at which the sensor is switching. 

See Sense clock for details. Sense clock 

source 

4 IMOD Modulator IDAC IMOD = Modulation IDAC current 

5 ICOMP 
Compensation 

IDAC 
ICOMP = Compensation IDAC current 

6 VDD N/A This parameter is the device supply voltage. 

7 CS N/A This parameter is the sensor parasitic capacitance. 

8 N/A 
Modulator clock 

frequency 

Modulator clock divider does not impact raw count. 

See the Modulator clock section for more details. 

3.2.6 Analog multiplexer (AMUX) 

The sigma delta converter scans one sensor at a time. An analog multiplexer selects one of the GPIO cells and 

connects it to the input of the sigma delta converter, as Figure 35 shows. The AMUXBUS A and the GPIO cell 

switches (see SW3 in Figure 40) forms this analog multiplexer. AMUXBUS A connects to all GPIOs that support 
CAPSENSE™. See the corresponding Device datasheet for a list of port pins that support CAPSENSE™. 
AMUXBUS A also connects the integrating capacitor CMOD to the sigma-delta converter circuit. AMUXBUS B is 

used for shielding and is kept at VREF when shield is enabled. 
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3.2.7 CAPSENSE™ CSD shielding 

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ supports shield electrodes for liquid tolerance and proximity sensing. 

CAPSENSE™ has a shielding circuit that drives the shield electrode with a replica of the sensor switching signal 
to nullify the potential difference between sensors and shield electrode. See Driven-shield signal and shield 

electrodeDriven-shield signal and shield  and Effect of liquid droplets and liquid stream on a self-
capacitance sensor for details on how this is useful for liquid tolerance. 

In the sensing circuit, the sigma delta converter keeps the AMUXBUS A at VREF (see Sigma-delta converter). The 
GPIO cells generate the sensor waveforms by switching the sensor between AMUXBUS A and a supply rail 
(either VDD or ground, depending on the configuration). The shielding circuit works in a similar way; AMUXBUS B 

is always kept at VREF. The GPIO cell switches the shield between AMUXBUS B and a supply rail (either VDDD or 
ground, the same configuration as the sensor). This process generates a replica of the sensor switching 

waveform on the shield electrode. g 

For a large shield layer with high parasitic capacitance, an external capacitor (Csh tank capacitor) is used to 
enhance the drive capacity of the shield electrode driver. 

3.3 CAPSENSE™ CSX sensing method (third- and fourth-generation) 

Figure 42 illustrates the CSX sensing circuit. The implementation uses the following hardware sub-blocks from 
CSD HW. 

• An 8-bit IDAC and the sigma delta converter 

• AMUXBUS A  

• CAPSENSE™ clock generator for Tx clock and modulator clock 

• VREF and port pins for Tx and Rx electrodes and external caps  

• Two external capacitors (CINTA and CINTB) (see Table 34 for recommended value of these capacitors) 

Note: PSoC™ 4100 does not support the CSX sensing method. 
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Figure 42 CAPSENSE™ CSX sensing method configuration 
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The CSX sensing method measures the mutual-capacitance between the Tx electrode and Rx electrode, as 
shown in Figure 42. The Tx electrode is excited by a digital waveform (Tx clock), which switches between 

VDDIO (or VDDD if VDDIO is not available in the given part number) and ground. The Rx electrode is statically 
connected to AMUXBUS A. The CSX method requires two external integration capacitors, CINTA and CINTB. The 

value of these capacitors is listed in Table 34. 

Tx Clock

SW1

SW2

VAMUXBUS-A

VCINTA

VCINTB

Sub Conversion

 

Figure 43 CSX sensing waveforms 

Figure 43 shows the voltage waveforms on the Tx electrode and CINTA and CINTB capacitors. The sampling – a 

process of producing a “sample” – is started by the firmware by initializing the voltage on both external 

capacitors to VREF and performing a series of sub-conversions. A sub-conversion is a capacitance to count 
conversions performed within a Tx clock cycle. The sum of results of all sub-conversions in a sample is referred 

to as “raw count”.  

During a sub-conversion, both SW1 and SW2 switches are operated in phase with the Tx clock. On the rising 
edge of the Tx clock, SW1 is closed (SW2 is open during this time) and charge flows from the Tx electrode to the 

Rx electrode. This charge is integrated onto the CINTA capacitor, which increases the voltage on CINTA. The IDAC is 
configured in sink mode to discharge the CINTA capacitor back to voltage VREF. On the falling edge of the Tx clock, 

SW2 is closed (SW1 is open during this time) and the charge flows from the Rx electrode to the Tx electrode. 
This causes the voltage on CINTB to go below VREF. The IDAC is configured in source mode to bring the voltage on 

CINTB back to VREF.  

The charge transferred between Tx and Rx electrodes in both the cycles is proportional to mutual-capacitance, 

CM, between the electrodes. The sigma delta converter controls IDAC for charging or discharging the external 

capacitors and also it measures the charging and discharging time in terms of modulator clock cycles for a sub-
conversion. Multiple sub-conversions are performed during the CSX scanning and the result of each sub-
conversion is accumulated to produce “raw count” for a sensor. 

The modulator clock is used to measure the time taken to charge/discharge external capacitors within a Tx 
clock cycle. For this reason, modulator clock frequency must be always greater than Tx clock frequency; higher 

modulator clock frequency leads to better accuracy. For proper operation, the IDAC current should be set such 
that the CINTA and CINTB capacitors are charged/discharged within one Tx clock cycle. The CAPSENSE™ 
Component / middleware provides an option to automatically calibrate the IDAC. It is recommended to enable 
this option. 
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Equation 14. Raw count relationship for mutual-capacitance sensing 

RawcountCounter =
2 VTX FTX CM MaxCount 

IDAC
 

MaxCount =
FMod NSub

FTX
 

Where, 

IDAC = IDAC current 

CM = Mutual-capacitance between Tx and Rx electrodes 

VTX = Amplitude of the Tx signal 

FTX = Tx clock frequency 

FMod = Modulator clock frequency 

NSub = Number of sub-conversions   

When you place a finger on the CSX button, the mutual-capacitance between Rx and Tx electrodes decreases, 
which decreases the raw count. This decrease in raw count from the hardware is inverted by the CAPSENSE™ 
Component to make it similar to the raw count change in CSD for a finger touch. The final resulting inverted raw 

count is given by Equation 15.  

Equation 15. Formula to determine rawcountComponent 

RawcountComponent = MaxCount − RawcountCounter 

See CSX sensing method (third- and fourth-generation) for more details of CSX hardware parameters.  
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3.4 CAPSENSE™ CSD-RM sensing method (fifth-generation) 

This section provides an overview of the CSD-RM architecture implemented in the Fifth-Generation CAPSENSE™ 
(known as multi sense converter (MSC)) devices. The main features include ratiometric sensing, differential 

mode of operation without the need of reference voltage, use of capacitor DACs (CDAC) in place of current DACs 
(IDAC) which improves noise performance. 
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Figure 44 CAPSENSE™ CSD-RM (fifth-generation) 

3.4.1 GPIO cell capacitance to charge converter 

Section 3.2.1 explains the GPIO cell configuration. In the Fifth-Generation architecture, the sensor is either 

interfaced to the AMUX (as before) or a new control MUX matrix which supports autonomous scanning (limited 
number of pins supported). The GPIO cells are configured as switched-capacitance circuits that convert sensor 
capacitances into equivalent charge transfer. Figure 45 shows the GPIO cell structure. 
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Figure 45 GPIO cell structure 

Four non-overlapping, out-of-phase clocks of frequency FSW control the switches (SW1, SW2, SW3 and SW4) as 

Figure 46 shows. 
 

VCs

t

VDDA

SW2 CLOSED

SW3 CLOSED

VDDA/2

0

TSW = 1/FSW

SW1 CLOSED

SW4 CLOSED

 

Figure 46 Voltage across sensor capacitance 

3.4.2 Capacitor DACs (CDACs) 

IDACs are replaced by CDACs in the Fifth-Generation CAPSENSE™ architecture. It consists of two CDACs, a 

reference capacitor DAC and a compensation capacitor DAC. In each sense clock period the sensor capacitance, 
as mentioned in GPIO cell capacitance to charge converter, transfers charge to both CMOD in a way that it 
unbalances the voltage between the CMOD’s. Both capacitor DACs are switched onto CMOD multiple times during a 
sense clock period to balance the CMOD’s back to their original voltage. Number of cycles required by the reference 

capacitor DAC to balance is proportional to the self-capacitance of the sensors. 
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3.4.3 CAPSENSE™ clock generator 

This block generates the sense clock FSW, and the modulation clock FMOD, from the high-frequency system 
resource clock (HFCLK) or peripheral clock (PERI) depending on the PSoC™ device family.  

3.4.3.1 Sense clock 

CAPSENSE™ clock generation is similar to that in the older generation as explained in Section 3.2.4.1. 

3.4.3.2 Modulator clock 

The modulation clock is used by the Ratiometric sensing technology. This clock determines the sensor scan 
time based on Equation 16 and Equation 17. 

Equation 16. Sensor scan time 

𝑆ensor scan time =  Hardware scan time + Sensor initialization time 

Equation 17. Hardware scan time 

𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 scan time =  
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠)

Sense clock frequency ⁄  

Where, 

Number of subconversions = Total number or sub-conversions in single scan  

Subconversion = Capacitance to count conversions performed within a sense clock cycle 

Sensor initialization time = Time taken by the sensor to write to the internal registers and initiate a scan  

3.4.4 Ratiometric sensing technology 

It consists of a ratiometric converter and two CDACs, a reference capacitor DAC and a compensation capacitor 

DAC. In each sense clock period the sensor capacitance, as mentioned in GPIO cell capacitance to charge 
converter, transfers charge to both CMOD in a way that it unbalances the voltage between the CMOD’s. The 
Ratiometric converter controls the reference CDAC by switching it ON or OFF corresponding to the small 

voltage variations across two CMOD’s to maintain the CMOD’s voltage at same level. Number of cycles required by 
the reference capacitor DAC to balance the voltage between the CMOD’s is proportional to the self-capacitance of 
the sensors. 

The compensation capacitor is used to compensate excess mutual-capacitance from the sensor to increase the 
sensitivity. The number of times it is switched depends on the amount of charge the user application is trying to 
compensate (remove) from the sensor mutual-capacitance.  

The ratiometric converter can operate in either single CDAC mode or dual CDAC mode. 

• In the single CDAC mode, the reference CDAC is controlled by the ratiometric converter; the compensation 
CDAC is always OFF. 

• In the dual CDAC mode, the reference CDAC is controlled by the ratiometric converter; the compensation 

CDAC is always ON. Reference CDAC is capable of compensating up to 95%, results in increased signal as 
explained in Conversion gain and CAPSENSE™ signal. 
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In the single CDAC mode, if Cref is the value of the reference CDAC, the approximate value of raw count is given 
by Equation 18. 

 

Equation 18. CSD-RM single CDAC raw count 

Rawcount = Maxcount.
Cs

SnsClkDiv. Cref

 

In the dual CDAC mode, the compensation CDAC is always ON. If Ccomp is the compensation CDAC, the equation 
for the raw count is is given by Equation 19. 

Equation 19. CSD-RM dual CDAC raw count 

 

Where, 

MaxCount = NSub.SnsClkDiv 

NSub = Number of sub-conversions 

SnsClkDiv = Sense clock divider 

CompClkDiv = Compensation CDAC divider 

CS = Sensor capacitance 

Cref = Reference capacitance 

Ccomp = Compensation capacitance 

As per Equation 18, the output raw count is proportional to the ratio of sensor capacitance to the reference 

capacitance, and hence the name Ratiometric Sensing. 

Noise improvement is one of the main advantages of Fifth-Generation over previous generation of CAPSENSE™ 

technology. The dominant noise sources in the Fourth-Generation are current (IMOD), reference voltage (VREF), 
clock jitter (FSW) (see Equation 12). These noise souces have been removed for the Fifth-Generation (see 

Equation 19). The IDAC has been replaced with CDAC. The system has been made fully differential, so it does 
not need VREF. The CAPSENSE™ architecture is no longer affected by jitter as the scan result is now based on the 

edges of the clock rather than the duration of the clock. 

3.4.5 Analog multiplexer (AMUX) and control matrix (CTRLMUX) 

Another feature introduced in the Fifth-Generation is the control matrix (CTRLMUX) as shown in Figure 44. The 
CTRLMUX enables autonomous scanning and provides immunity to on-chip IO noise. The CTRLMUX allows the 

CAPSENSE™ IP to directly handle the sensor inputs5 (in addition to the traditional GPIO mode), and hence 

supports autonomous scanning of the sensors without the CPU. 

 

                                                                    
5 Supports limited number of inputs. Refer to the Device for more details. 

Rawcount = Maxcount.
Cs − 2.

SnsClkDiv

CompClkDiv
. Ccomp

SnsClkDiv. Cref
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3.4.6 CAPSENSE™ CSD-RM shielding 

PSoC™ 4 CAPSENSE™ supports shield electrodes for liquid tolerance and proximity sensing. The purpose of the 

shielding is to remove the parasitic capacitance between sensor and shield electrodes.  See Driven-shield 
signal and shield electrode and Effect of liquid droplets and liquid stream on a self-capacitance sensor for 

details on how this is useful for liquid tolerance. The Fifth-Generation CAPSENSE™ architecture supports two 
shield modes – active and passive shielding.  

3.4.6.1 Active shielding 

In active shielding mode, shield circuit drives the shield electrode with a replica of the sensor signal using a 
buffer as shown in Figure 47. This nullify the potential difference between sensors and shield electrode. 
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Figure 47 Active shield signal 

3.4.6.2 Passive shielding 

In passive shielding mode there is no buffer used, instead shield is switched between VDDA and GND as shown in 

Figure 48. The switching is controlled in such a way that the net charge between sensor and shield is nullified 
every two sense clocks.  
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Figure 48 Passive shield signal 
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Table 4 provides the comparison of features of active shielding vs passive shielding features. 

 Active vs passive shielding 

3.5 CAPSENSE™ CSX-RM sensing method (fifth-generation) 

Figure 49 illustrates the CSX-RM sensing circuit. The implementation uses the following hardware sub-blocks: 

• Two 8-bit capacitor DACs and ratiometric converter 

• AMUXBUS and CTRLMUX 

• CAPSENSE™ clock generator for Tx clock and modulator clock 

• Port pins for Tx and Rx electrodes and external caps 

• Two external capacitors (CMOD1 and CMOD2) 
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Figure 49 CAPSENSE™ CSX-RM sensing method configuration 

Feature Active shielding Passive shielding Effect 

Performance Higher Lower 
Active shielding is preferred for high 

performance applications. 

Power impact Higher Lower 
Passive shielding is preferred for low 

power applications. 
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The CSX-RM sensing method measures the mutual-capacitance between the Tx electrode and Rx electrode, as 
shown in Figure 49. The Tx electrode is activated by a digital waveform (Tx clock), which switches between VDDA 

and ground. The Rx electrode is statically connected to AMUXBUS A or CTRLMUX. The CSX-RM method requires 
two external integration capacitors, CMOD1 and CMOD2. 

The sampling – a process of producing a “sample” – is started by the firmware by initializing the voltage on 

both external capacitors (CMOD) to VDDA/2 and performing a series of sub-conversions. A sub-conversion is a 
capacitance to count conversions performed within a Tx clock cycle. The sum of results of all sub-conversions 
in a sample is referred to as “raw count”.  

On the rising and falling edge of the Tx clock, charge flows from the Tx electrode to the Rx electrode. In such a 
way that it unbalances the voltage between the external CMOD capacitors. Both capacitor DACs (reference and 
compensation capacitor DACs) are switched onto CMOD multiple times during a sense clock period to balance 

the CMOD’s back to their original voltage. Number of cycles required by the reference capacitor DAC to balance is 
proportional to the mutual-capacitance, Cm, between the electrodes. 

The number of times the reference capacitor is switched with respect to the modulator clock is denoted by the 
Tx clock divider value according to Equation 20. 

Equation 20. Tx clock divider 

TxClkDiv =  
FMod 

FTx
 

Where, 
TxClkDiv = Tx clock divider 
FMod = Modulator frequency 

FTx = Tx clock frequency 

The compensation capacitor is used to compensate excess mutual-capacitance from the sensor to increase the 

sensitivity. The number of times it is switched depends on the amount of charge the user application is trying to 

compensate (remove) from the sensor mutual-capacitance. The number of times the compensation capacitor 
is switched with respect to the modulator clock is denoted by the value of the compensation CDAC divider 
according to the Equation 21. The CDAC compensation clock divider must be less than or equal to the Tx clock 

divider. 

Equation 21. Compensation CDAC divider 

CompClkDiv =   
FMOD 

FComp
 

Where, 

CompClkDiv = Compensation CDAC divider 

FMOD = Modulator frequency 

Fcomp = Compensation CDAC clock frequency 
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3.5.1 Ratiometric sensing technology 

The ratiometric converter gives an equivalent raw count which is proportional to the sensor mutual-
capacitance after each scan. The ratiometric converter can operate in either single CDAC mode or dual CDAC 

mode. 

• In the single CDAC mode, the reference CDAC is controlled by the ratiometric converter; the compensation 

CDAC is always OFF. 

• In the dual CDAC mode, the reference CDAC is controlled by the ratiometric converter; the compensation 
CDAC is always ON. Compensation CDAC is capable of compensating up to 95%, results in increased signal 
as explained in Conversion gain and CAPSENSE™ signal. 

In the single CDAC mode, if Cref is the value of the reference CDAC, the approximate value of raw count is given 

by Equation 22. 

Equation 22. CSX-RM single CDAC raw count 

Rawcount = Maxcount.
CM

TxClkDiv. (
Cref

2
)

 

In the dual CDAC mode, the compensation CDAC is always ON. If Ccomp is the compensation CDAC, the equation 
for the raw count is is given by Equation 23. 

Equation 23. CSX-RM dual CDAC raw count 

Rawcount = Maxcount.
CM −

TxClkDiv
CompClkDiv

. Ccomp

TxClkDiv. (
Cref

2
)

 

Where, 

MaxCount = NSub.TxClkDiv 

NSub = Number of sub-conversions 

TxClkDiv = Tx clock divider 

CompClkDiv = CDAC compensation divider 

CM = Mutual-capacitance of the sensor 

Cref = Reference capacitance 

Ccomp = Compensation capacitance 

According to Equation 23, the output raw count is proportional to the ratio of mutual-capacitance of the 
sensor to the reference capacitance, and hence the name ratiometric sensing. 

3.6 Autonomous scanning 

In previous generation CAPSENSE™ technology, after each scan, CPU is interrupted to configure next sensor. 

Autonomous scanning mode in Fifth-Generation CAPSENSE™ technology avoids the CPU intervention for 
scanning every next sensor. This significantly reduces the CPU bandwidth required for scanning widgets with 
large number of sensors. Autonomous scanning requires features such as CTRLMUX and DMA. As the number of 
pins supported with CTRLMUX is limited, number of pins supporting autonomous scanning is also limited. See 

Configuring autonomous scan section for more details. 
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3.7 Usage of multiple channels 

The PSoC™ 4100S Max device supports two Fifth-Generation CAPSENSE™ Blocks – MSC0 and MSC1. Each block 

has the same functionality and performance as explained in the CAPSENSE™ CSD-RM sensing method (fifth-
generation) and CAPSENSE™ CSX-RM sensing method (fifth-generation) sections. Each instance can be 

considered as a channel and multiple instances imply multiple channels. Multi-channel behavior can be 
supported by multiple instances in single chip and/or having multiple chips. The operation of the channels is 

synchronized and operate in lockstep when scanning the sensors hooked in to the channels. Lockstep 
guarantees clock synchronization and avoid any cross-channel noise due to un-synchronized sense clocks.  
See Multi-channel scanning section for more details. 
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4 CAPSENSE™ design and development tools 

This chapter introduces the available software tools, such as PSoC™ Creator and ModusToolbox™, to develop 
your CAPSENSE™ application. For more details, see the user manual of the respective IDE. Table 5 shows the 
supported devices and the CAPSENSE™ component/middleware version in PSoC™ Creator and 

ModusToolbox™. 

 Tools and supported devices 

Devices Software tool CAPSENSE™ library 

PSoC™ 4000S, PSoC™ 4100S, PSoC™ 4100S Plus, 

PSoC™ 4100S Plus 256K, PSoC™ 4500S 

ModusToolbox™, 

PSoC™ Creator 

CAPSENSE™ middleware, 

CAPSENSE™ component 

PSoC™ 4100S Max, All PSoC™ 6 devices ModusToolbox™ CAPSENSE™ middleware 

All other PSoC™ 4 devices PSoC™ Creator CAPSENSE™ component 

4.1 PSoC™ Creator 

PSoC™ Creator is a state-of-the-art, easy-to-use IDE. It offers a unique combination of hardware configuration 
and software development based on classical schematic entry. You can develop applications in a drag-and-

drop design environment using a library of Components. For details, see the PSoC™ Creator home page. 

4.1.1 CAPSENSE™ component 

PSoC™ Creator provides a CAPSENSE™ component, which is used to create a capacitive touch system in PSoC™ 
by simply configuring this Component. The CAPSENSE™ component also provides an application programming 

interface (API) to simplify firmware development. Some PSoC™ 4 Bluetooth® LE and PSoC™ 6 MCU devices also 
support a CAPSENSE™ Gesture Component (see the corresponding Device datasheet to see if your device 

supports this Component).  

 

Figure 50 PSoC™ Creator component placement 

https://www.cypress.com/products/modustoolbox-software-environment
https://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
https://www.cypress.com/products/modustoolbox-software-environment
https://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
http://www.cypress.com/?id=2494&source=an85951
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Each CAPSENSE™ component has an associated datasheet that explains details about the Component. To open 
the Component datasheet, right-click the Component and select Open Datasheet. 

The CAPSENSE™ component also has a Tuner GUI, called the Tuner GUI, to help with the tuning process. 

4.1.2 CapSense_ADC6  component 

The CapSense_ADC component is only applicable for the PSoC™ 4S-Series, PSoC™ 4100S Plus, PSoC™ 4100PS, 

and PSoC™ 6 MCU devices. This component should be used when both CAPSENSE™ and ADC operations are 
required. This component allows using the CAPSENSE™ block for ADC operation and touch functionality in a 
time-multiplexed manner. 

4.1.3 Tuner GUI 

Tuner helper is included with the CAPSENSE™ component and assists in tuning CAPSENSE™ parameters and 
monitoring sensor data such as raw count, baseline, and difference count. Refer the Component datasheet / 
middleware document for the detailed procedure on how to use Tuner GUI.  

4.1.4 Example projects 

You can use the CAPSENSE™ example projects provided in PSoC™ Creator to learn schematic entry and 
firmware development. To find a CAPSENSE™ example project, go to the PSoC™ Creator start Page, click Find 

Code Example …, and select the appropriate architecture, as Figure 51 shows. You can also filter for a project 
by writing partial or complete project name in the Filter by field. 
 

 

Figure 51 PSoC™ Creator example project 

                                                                    
6 CapSense_ADC is not supported in devices with Fifth-Generation CAPSENSE™ block. 

http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd


  

 

 

Application Note 57 of 229 001-85951 Rev. AA  

   2021-10-01 

 

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide 
  

CAPSENSE™ design and development tools 

  

4.2 ModusToolbox™ 

ModusToolbox™ software suite is used for the development of PSoC™ 6 and PSoC™ 47 based CAPSENSE™ 
applications. You can download ModusToolbox™ from here. Before you start working with this software, It is 

recommended that you go through the Quick start guide and user guide. If you have ModusToolbox IDE 
installed in your system, you can create a CAPSENSE™ application for the devices supported in 
ModusToolbox™.  

4.2.1 CAPSENSE™ middleware 

ModusToolbox™ provides a CAPSENSE™ middleware, which can be used to create a capacitive touch system in 
PSoC™ by simply configuring parameters in the CAPSENSE™ configuration tool. The middleware also provides 
an application programming interface (APIs) to simplify firmware development. See the CAPSENSE™ 

middleware library for more details. 

4.2.2 CAPSENSE™ configurator 

The CAPSENSE™ configurator tool in ModusToolbox™ is similar to that in PSoC™ Creator which is used to 

configure the CAPSENSE™ hardware and software parameters. For more details on configuring CAPSENSE™ in 
ModusToolbox™, see the ModusToolbox™ CAPSENSE™ configurator guide and CAPSENSE™ middleware 
library. Figure 52 shows how to open the CAPSENSE™ configuration tool in ModusToolbox™. Alternatively, it 

can also be opened from the Quick panel in the ModusToolbox™. For simplicity of documentation, this design 
guide shows selecting the CAPSENSE™ parameter in PSoC™ Creator CAPSENSE™ component. 

 
Figure 52 CAPSENSE™ configurator tool in ModusToolbox™ 

                                                                    
7 See Table 5 for supported PSoC™ 4 devices in ModusToolbox™. 

http://www.cypress.com/modustoolbox
http://www.cypress.com/ModusToolboxQSG
http://www.cypress.com/ModusToolboxUserGuide
https://infineon.github.io/capsense/capsense_api_reference_manual/html/index.html
https://infineon.github.io/capsense/capsense_api_reference_manual/html/index.html
https://www.cypress.com/products/modustoolbox-software-environment
https://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
http://www.cypress.com/ModusToolboxCapSenseConfig
https://infineon.github.io/capsense/capsense_api_reference_manual/html/index.html
https://infineon.github.io/capsense/capsense_api_reference_manual/html/index.html
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4.2.3 CSDADC middleware8 

This CSDADC middleware should be used when both the CAPSENSE™ and ADC operations are required. This 
middleware allows using the CAPSENSE™ hardware block for ADC operation and touch functionality in a time-

multiplexed manner. It could be used for all three sensing modes i.e., CSD, ADC, and CSX. See the CSDADC 
middleware library documentation for more details. 

4.2.4 CSDIDAC middleware 

The CSDIDAC middleware allows you to use the CAPSENSE™ IDAC in a standalone mode. You can use this 
middleware if you are not using CAPSENSE™ middleware or if you are using only one IDAC for CAPSENSE™. See 

the CSDADC middleware library documentation. 

4.2.5 CAPSENSE™ tuner 

ModusToolbox™ also supports a GUI tool that can be used for tuning CAPSENSE™ parameters. This tool can be 

opened from the Device configurator by selecting Launch CapSense Tuner as shown in Figure 52. See the 

CAPSENSE™ tuner guide documentation. 

4.2.6 Example projects 

To quickly start the CAPSENSE™ system design, start with the example projects provided in ModusToolbox™. 

You can find a CAPSENSE™ example project by navigating to File > New > ModusToolbox Application. Choose 

the appropriate Board Support Package with a device. Figure 53 shows creating a CAPSENSE™ CSD Button 

example starter code in ModusToolbox™ from the list of available code examples. 

                                                                    
8 CapSense_ADC is not supported in devices with Fifth-Generation CAPSENSE™ block. 

https://infineon.github.io/csdadc/csdadc_api_reference_manual/html/index.html
https://infineon.github.io/csdadc/csdadc_api_reference_manual/html/index.html
https://infineon.github.io/csdidac/csdidac_api_reference_manual/html/index.html
https://www.cypress.com/file/492971/download
http://www.cypress.com/ModusToolboxCapSenseTuner
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Figure 53 Creating CAPSENSE™ CSD Button example project in ModusToolbox™ 
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4.3 Hardware kits 

Table 6 lists the development kits that support evaluation of PSoC™ 4 and PSoC™ 6 CAPSENSE™. 

 PSoC™ 4 and PSoC™ 6 CAPSENSE™ development kits 

Development kit Supported CAPSENSE™ features 

PSoC™ 4000 pioneer kit (CY8CKIT-040) A 5x6 CAPSENSE™ touchpad and a wire proximity sensor 

PSoC™ 4 S-series pioneer kit  

(CY8CKIT-041) 

Two self- or mutual-capacitive sensing buttons 

A 7×7 self- or mutual-capacitive sensing touchpad 

PSoC™ 4 S-series prototyping kit (CY8CKIT-145) 

Three self- or mutual-capacitive sensing buttons 

A five-segment self- or mutual-capacitive sensing linear 

slider  

PSoC™ 4100S Plus prototyping kit (CY8CKIT-149) 

Three self- or mutual-capacitive sensing buttons 

A six-segment self- or mutual-capacitive sensing linear 

slider 

PSoC™ 4100S Max pioneer kit (CY8CKIT-041S-

Max) 

Two self- or mutual-capacitive sensing buttons 

An eight-segment self- or mutual-capacitive sensing linear 

slider 

A 10x16 self- or mutual-capacitive sensing touchpad 

A proximity sensor loop 

PSoC™ 4 pioneer kit (CY8CKIT-042) A five-segment linear slider 

PSoC™ 4 Bluetooth® LE pioneer Kit (CY8CKIT-

042-BLE) 
A five-segment linear slider and a wire proximity sensor 

PSoC™ 4200-M pioneer kit (CY8CKIT-044) 
A five-element gesture detection and two proximity wire 

sensors 

PSoC™ 4200-L pioneer kit (CY8CKIT-046) 
A five-element gesture detection, two proximity wire 

sensors, and an eight-element radial slider 

PSoC™ 4100PS prototyping kit (CY8CKIT-147) 
No onboard CAPSENSE™ sensors. The kit can be used to 

connect external sensors to any I/O pin. 

CAPSENSE™ proximity shield  

(CY8CKIT-024) 

A four-element gesture detection and one proximity loop 

sensor 

CAPSENSE™ liquid level sensing shield 

(CY8CKIT-022) 
A two-element flexible PCB and 12-element flexible PCB 

PSoC™ 4 processor module (CY8CKIT-038), with 

PSoC™ development kit (CY8CKIT-001) 
A five-segment linear slider and two buttons 

CAPSENSE™ expansion board kit  

(CY8CKIT-031), to be used with CY8CKIT-038 

and CY8CKIT-001 

A 10-segment slider, five buttons and a 4 x 4 matrix button 

with LED indication. 

MiniProg3 program and debug kit  

(CY8CKIT-002) 
CAPSENSE™ performance tuning in CY8CKIT-038 

PSoC™ 6 Wi-Fi BT pioneer kit 

(CY8CKIT-062-WiFi-BT pioneer kit) and 
PSoC™ 6 Bluetooth® LE pioneer kit 

(CY8CKIT-062-BLE pioneer kit) 

A 5-segment CAPSENSE™ slider, two CAPSENSE™ buttons, 
one CAPSENSE™ proximity sensing header, a proximity 

sensor. 

http://www.cypress.com/CY8CKIT-040
http://www.cypress.com/CY8CKIT-041
http://www.cypress.com/CY8CKIT-145
http://www.cypress.com/CY8CKIT-149
https://www.cypress.com/documentation/development-kitsboards/psoc-4100s-max-pioneer-kit-cy8ckit-041s-max
https://www.cypress.com/documentation/development-kitsboards/psoc-4100s-max-pioneer-kit-cy8ckit-041s-max
http://www.cypress.com/?rid=77780&source=an85951
http://www.cypress.com/?rID=102636
http://www.cypress.com/?rID=102636
http://www.cypress.com/cy8ckit-044
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-046-psoc-4-l-series-pioneer-kit
http://www.cypress.com/CY8CKIT-147
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-024-capsense-proximity-shield
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-022-capsense-liquid-level-sensing-shield?source=search&keywords=cy8ckit-022
http://www.cypress.com/go/cy8ckit-038
http://www.cypress.com/?rID=37464&source=an85951
http://www.cypress.com/?rID=50970&source=an85951
http://www.cypress.com/go/cy8ckit-038
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-001-psoc-development-kit?source=search&keywords=CY8CKIT-001
http://www.cypress.com/?rID=38154&sourec=an85951
http://www.cypress.com/cy8ckit-062-wifi-bt
http://www.cypress.com/cy8ckit-062-ble
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Development kit Supported CAPSENSE™ features 

PSoC™ 6 Wi-Fi BT prototyping kit (CY8CPROTO-

063-4343W)  

A 5-segment CAPSENSE™ slider and two mutual-cap 

CAPSENSE™ buttons 

 

http://www.cypress.com/cy8cproto-062-4343w
http://www.cypress.com/cy8cproto-062-4343w
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5 CAPSENSE™ performance tuning 

After you have completed the sensor layout (see PCB layout guidelines), the next step is to implement the 

firmware and tune the CAPSENSE™ parameters for the sensor to achieve optimum performance. The 
CAPSENSE™ sensing method is a combination of hardware and firmware techniques. Therefore, it has several 
hardware and firmware parameters required for proper operation. These parameters should be tuned to 
optimum values for reliable touch detection and fast response. Most of the capacitive touch solutions in the 

market must be manually tuned. A unique feature called SmartSense (also known as Auto-tuning) is available 

for PSoC™ 4 and PSoC™ 6 CAPSENSE™. SmartSense is a firmware algorithm that automatically sets all 
parameters to optimum values.  

5.1 Selecting between SmartSense and manual tuning 

SmartSense auto-tuning reduces design cycle time and provides stable performance across PCB variations, but 
requires additional RAM and CPU resources, as indicated in the Component datasheet / middleware 
document or ModusToolbox™ CAPSENSE™ configurator guide, to allow runtime tuning of CAPSENSE™ 
parameters. SmartSense is recommended mainly for conventional CAPSENSE™ applications involving simple 

button and slider widgets, and is currently supported only for Self-capacitance sensing Self-capacitance 
sensingand not Mutual-capacitance sensing. 

On the other hand, manual tuning requires effort to tune optimum CAPSENSE™ parameters, but allows strict 
control over characteristics of capacitive sensing system, such as response time and power consumption. It 
also allows use of CAPSENSE™ beyond the conventional button and slider applications such as proximity and 

liquid-level-sensing. 

SmartSense is the recommended tuning method for all the conventional CAPSENSE™ applications. You should 

use SmartSense auto-tuning if your design meets the following requirements: 

• The design is for conventional user-interface application like buttons, sliders, and touchpad. 

• The parasitic capacitance (CP) of the sensors is within SmartSense-supported range as mentioned in the 

“SmartSense operating conditions” section in Component datasheet / middleware document or 
ModusToolbox™ CAPSENSE™ configurator guide. 

• The sensor scan time chosen by SmartSense meets the response time/power requirements of the end 

system. 

• SmartSense auto-tuning meets the RAM/flash requirements of the design. 

For all other applications, use Manual tuning. In such cases, you can also use SmartSense as an initial step to 
find the optimum hardware parameters such as Sense Clock frequency, and then change the tuning mode to 
manual tuning for further tuning of the CapSense parameters. See Using SmartSense to determine hardware 

parameters. Note that manual tuning requires I2C or UART communication with a host PC. 

 

https://www.cypress.com/file/455231/download
https://www.cypress.com/file/455231/download
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5.2 SmartSense 

5.2.1 Overview 

The CAPSENSE™ algorithm is a combination of hardware and firmware blocks inside PSoC™. Therefore, it has 
several hardware and firmware parameters required for proper operation. These parameters need to be tuned 
to optimum values for reliable touch detection and fast response. 

SmartSense is a CAPSENSE™ tuning method that automatically sets sensing parameters for optimal 
performance, based on user-specified finger capacitance values, and continuously compensates for system, 

manufacturing, and environmental changes. 

Note that SmartSense currently supports widgets with CSD (Self-cap) Sensing mode only. CSX (Mutual-cap) 

widgets must be tuned manually. 

Some advantages of SmartSense, as opposed to manual tuning are: 

• Reduced design cycle time: The design flow for capacitive touch applications involves tuning all of the 

sensors. This step can be time consuming if there are many sensors in your design. In addition, you must 

repeat the tuning when there is a change in the design, PCB layout, or mechanical design. Auto-tuning 
solves these problems by setting all of the parameters automatically. Figure 54 shows the design flow for a 
typical CAPSENSE™ application with and without SmartSense. 
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Figure 54 Design flow with and without SmartSense 
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• Performance is independent of PCB variations: The parasitic capacitance, CP, of individual sensors can 
vary due to process variations in PCB manufacturing, or vendor-to-vendor variation in a multi-sourced 

supply chain. If there is significant variation in CP across product batches, the CAPSENSE™ parameters must 
be re-tuned for each batch. SmartSense sets parameters for each device automatically, hence taking care of 

variations in CP. 

• Ease of use: SmartSense is faster and easier to use because only a basic knowledge of CAPSENSE™ is 

needed. 

Note that SmartSense can be used in multiple ways: 

1. SmartSense (Full auto-tune) – This is the quickest way to tune. This method calibrates CAPSENSE™ 
hardware and software parameters automatically at runtime. This is the recommended method for most 
designs.  

2. SmartSense (Hardware parameters only) – This method auto-tunes all hardware parameters of 
CAPSENSE™, but allows to set user-defined threshold values (see Table 11). This method consumes less 

flash/RAM resources than SmartSense (Full Auto-Tune). Also, this method avoids the extra processing 
needed for automatic threshold calculation and hence allows lower power consumption for a given scan 
rate. Use this method for low-power or noisy designs or in cases with constrained memory requirements.  

3. SmartSense for initial tuning – You may also use SmartSense for initial tuning, to quickly find the best 

settings for a CAPSENSE™ board and then change to manual tuning. This method is useful for cases with 
strict requirements on response time or power consumption. This is a quick method to find the best 

settings, instead of starting manual tuning from scratch. Refer to the section Using SmartSense to 

determine hardware parameters for more details.  

4. CAPSENSE™ parameters auto-tuned in SmartSense 

Parameter Full auto-tune mode 
Hardware parameters only 

mode 

Scan resolution 

Calculated once on CAPSENSE™ initialization. 

Compensation IDAC 

Modulator IDAC 

Sense clock frequency 

Modulator clock frequency 

Finger threshold  

Calculated once on CAPSENSE™ 
initialization based on the 
selected finger capacitance and 

updated after each sensor scan. 

Manual selection (see Table 11).  

Noise threshold  

Hysteresis  

Negative noise threshold  

Low baseline reset 
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5.2.2 SmartSense full auto-tune 

In SmartSense Full Auto-tune mode, the only parameter that needs to be tuned by the user is the Finger 
Capacitance parameter. The Finger Capacitance parameter (CF) indicates the minimum value of finger 

capacitance that should be detected as a valid touch by the CAPSENSE™ Component. Whenever the actual CF 
that is added when the finger touches the button sensor is greater than the value specified for the Finger 
Capacitance parameter in the Component configuration window, the sensor status will change to ‘1’; however, 
if the actual CF added by the finger touch is less than the value specified in the Component configuration 

window, the sensor status will remain ‘0’. The way of tuning the finger capacitance is different for button and 

slider widgets. 

Note that even for SmartSense auto-tuning, the CAPSENSE™ Component allows manual configuration of some 

general parameters like enable/disable of compensation IDAC, filters, shield such as liquid-tolerance-related 

parameters and modulator clock. These can be left at their default values for most cases or configured based 

on the respective sections in this guide. 

5.2.2.1 Tuning button widgets  

This section explains how to choose the Finger capacitance value for the Button widget. You may perform only a 
coarse tuning of the Finger capacitance parameter for a working design, or you may choose to fine-tune the 

Finger capacitance value. Coarse-tuning will satisfy the requirements of most designs, but fine-tuning will allow 
you to choose the most efficient CAPSENSE™ parameters (i.e., minimum sensor scan time) using SmartSense. 

If you do not know the value of CF (CF can be estimated based on Equation 1), set the Finger capacitance as 

follows: 

1. Start by specifying the highest value for finger capacitance (from the available options in the list) and check 

the SNR and button status when the button is touched. Use the Tuner GUI to find the SNR. 

2. Decrease the finger capacitance parameter value until the button status changes to ‘1’ on touch and SNR>5. 
Figure 55 shows the detailed steps to find the right value for the Finger capacitance parameter in your 

design. 

Enable filters if the SNR of one or more sensors is less than 5:1 when the set finger capacitance is already at the 
least finger capacitance supported in the Component. You can also enable filters if externally induced noise is 

causing a decrease in SNR. See Table 7 to choose the right filter in this case. There are various types of filters 

available in the CAPSENSE™ Component such as Median Filter, IIR filter, and Average Filter; you can enable 
more than one filter to reduce the noise in the raw count according to the requirement. 

If you choose to use an IIR filter, begin by selecting a filter with a higher value of the filter coefficient and keep 
decreasing it until you achieve an SNR greater than or equal to 5:1. Using filters will affect the response time. 

You must properly select the filter coefficient such that the response time and SNR requirement are satisfied. 

If the SNR is still less than 5:1 even when the smallest allowed value of finger capacitance and proper filter is 

chosen, see PCB layout , Manual tuning, or Tuning debug FAQs for more details on debugging the issue.  
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Figure 55 Using SmartSense auto-tuning based CAPSENSE™ project in PSoC™ Creator 
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 Raw data noise filters in CAPSENSE™ component 

Filter Description Mathematical description Application 

Median 

Nonlinear filter that takes 
the three most recent 

samples and computes the 

median value. 

𝑦[𝑖] = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑥[𝑖],   𝑥[𝑖 − 1],   𝑥[𝑖
− 2]) 

Eliminates noise 
spikes from motors 

and switching power 

supplies 

Average 

Finite impulse response 
filter (no feedback) with 

equally weighted 
coefficients. It takes the four 
most recent samples and 

computes their average. 

𝑦[𝑖] =
1

4
∗ (𝑥[𝑖] + 𝑥[𝑖 − 1] +  𝑥[𝑖 − 2]

+  𝑥[𝑖 − 3]) 

Eliminates periodic 

noise (for example, 

from power supplies) 

First 
Order 

IIR 

Infinite impulse response 
filter (feedback) with a step 
response similar to an RC 
low pass filter, thereby 

passing the low-frequency 
signals (finger touch 

responses). 

K value is fixed to 256.  

N is the IIR filter raw count 

coefficient. 

A lower N value results in 
lower noise, but slows down 

the response. 

𝑦[𝑖] =
1

𝐾
∗ {𝑁 ∗ 𝑥[𝑖] +  (𝐾 − 𝑁)

∗ 𝑦[𝑖 − 1]} 

Eliminates 
high-frequency 

noise. 

5.2.2.2 Tuning slider widgets  

For sliders, set finger capacitance to the highest value initially. Slide your finger on the slider. If at any position 
on the slider, at least one slider segment status is ON and has an SNR >5:1, and at least two slider segments 

report a “difference count” i.e., a “sensor signal” value greater than 0, use this finger capacitance value. 
Otherwise, decrease the finger capacitance value until the above condition holds true. Figure 56 shows how to 
tune the finger capacitance for slider widget. 

If these conditions are not met even after setting minimum allowed Finger Capacitance, use Manual tuning or 
revise the hardware according to Slider design considerations or see Tuning debug FAQs. Figure 56 explains 

the process of setting finger capacitance value for sliders. 

Note: It is recommended to use the compensation IDAC because it allows a higher variation in the 
parasitic capacitance of the slider segment with respect to the slider segment that has the 
maximum CP. 
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Start

Slide finger over the slider and 
monitor the difference count i.e., 

Sensor Signal

Set the Finger capacitance value to 
the maximum allowed

At any finger position, do at least 
two slider segments provide 

difference count (Sensor Signal > 
0)?

End

Yes

Yes

No

NoAt any finger position, does at 
least one slider-segment provide 

an SNR > 5:1
and sensor signal > 50?

Decrease finger capacitance value by 
one unit

Is finger capacitance >= 
minimum allowed finger 

capacitance value?

No

Yes

A hardware change may be 
required.

Review slider design* or use 
manual tuning**

 

Figure 56 Setting finger capacitance value for ssliders 

* To review slider design, see the Slider design section in the Design considerations chapter. 

** To do manual tuning, see the Manual tuning section in the CAPSENSE™ performance tuning chapter. 

5.2.2.3 Tuning proximity widgets  

See AN92239 Proximity sensing with CAPSENSE™ and the “Proximity sensing” section in Getting started 

with CAPSENSE™ design guide. 

5.2.3 SmartSense hardware parameters-only mode 

See Table 11 for the recommended values for thresholds when the CSD tuning method is SmartSense 
(Hardware parameters only). 

5.2.4 SmartSense for initial tuning 

See Using SmartSense to determine hardware parameters for more details. 

http://www.cypress.com/documentation/application-notes/an92239-proximity-sensing-capsense
http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
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5.3 Manual tuning 

5.3.1 Overview 

SmartSense technology allows a device to calibrate itself for optimal performance and complete the entire 
tuning process automatically. This technology will meet the needs of most designs, but in cases where 
SmartSense does not work or there are specific SNR or power requirements, the CAPSENSE™ parameters can 

be adjusted to meet system requirements. This can be achieved by manual tuning. 

Some advantages of manual tuning, as opposed to SmartSense auto-tuning are:  

• Strict control over parameter settings: SmartSense sets all the parameters automatically. However, there 
may be situations where you need to have strict control over the parameters. For example, use manual 

tuning if you need to strictly control the time PSoC™ takes to scan a group of sensors or strictly control the 
sense clock frequency of each sensor (this can be done to reduce EMI in systems). 

• Supports higher parasitic capacitances: If the parasitic capacitance is higher than the value supported by 
SmartSense, you should use manual tuning. See the Component datasheet / middleware  for more details 

on the supported range of parasitic capacitance by SmartSense. 

The manual tuning process can be summarized in the following three steps and is shown in Figure 57. 

1. Set initial values of Selecting CAPSENSE™ hardware parameters using SmartSense (see Using SmartSense 

to determine hardware parameters) or determine the values manually. 

2. Tune CAPSENSE™ component hardware parameters to ensure that Signal-to-noise  is greater than 5:1 with 

a signal of at least 50 counts while meeting the system timing requirements.  

3. Set optimum values of Selecting CAPSENSE™ software parameters. 

The following sections describe the fundamentals of manual tuning and the above three steps in detail. 
Knowledge of the CAPSENSE™ architecture in PSoC™ is a prerequisite for these sections. See Capacitive touch 

sensing method and CAPSENSE™ generations in PSoC™ 4 and PSoC™ 6. The main difference in CAPSENSE™ 
architecture across different generations are listed in Table 2.  

Depending upon the sensing method selected, the manual tuning procedure will differ. See CSD sensing 
method (third- and fourth-generation), CSX sensing method (third- and fourth-generation) section for 
their respective manual tuning procedures. You can skip these sections if you are not planning to use manual 

tuning in your design. Figure 57 shows a general manual tuning procedure. 
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Start

Measure SNR

Set CAPSENSE  Hardware 
Parameters

Is SNR > 5
and 

signal >50 counts?

A hardware change may be 
required. Review your hardware 

design*

Does the system meet timing 
requirements?

Set CAPSENSE  Software 
parameters

Adjust CAPSENSE  
hardware parameters to 

meet scan time 
requirements.  

End

Is SNR > 5
and 

Signal >50 counts?

Yes

No

No

Adjust CAPSENSE  hardware 
parameters to increase SNR  

Ensure SNR > 5:1 
and system meets timing requirements

No

Yes

Yes

 

Figure 57 Manual tuning process overview 

* To review the hardware design, see the Sensor construction and PCB layout guidelines sections in the 
Design considerations chapter. 
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5.3.2 CSD sensing method (third- and fourth-generation) 

This section explains the basics of manual tuning using CSD sensing method. It also explains the hardware and 
software parameters that influence CSD sensing method and procedure of manual tuning for button, slider, 

touchpad and proximity widgets. 

5.3.2.1 Basics 

5.3.2.1.1 Conversion gain and CAPSENSE™ signal 

Conversion gain will influence how much signal the system sees for a finger touch on the sensor. If there is 

more gain, the signal is higher, and a higher signal means a higher achievable Signal-to-noise ratio (SNR). 
Note that an increased gain may result in an increase in both signal and noise. However, if required, you can 

use firmware filters to decrease noise. For details on available firmware filters, see Table 7. 

Conversion gain in single IDAC mode 

In the single IDAC mode, the raw count is directly proportional to the sensor capacitance. 

Equation 24. Raw count relationship to sensor capacitance 

raw count =  GCSD CS 

Where,  

CS = sensor capacitance 
CS = CP if there is no finger present on sensor 

CS = (CP + CF) when there is a finger present on the sensor  
GCSD = Capacitance to digital conversion gain of CAPSENSE™ CSD 

 
The approximate value of this conversion gain using the IDAC sourcing mode, according to Equation 10 and 

Equation 24 is: 

Equation 25. Capacitance to digital converter gain 

GCSD =  (2N − 1)
 VREF FSW

IMOD
  

 

Equation 26. Capacitance to digital converter gain (sinking IDAC mode) 

GCSD =  (2N − 1)
  (VDD − VREF) FSW

IMOD
 

Where, 

VREF = Comparator reference voltage. Refer Table 2. 

FSW = Sense clock frequency  

IMOD =  Modulator IDAC current 

N = Resolution of the sigma to delta converter. 

The tunable parameters of the conversion gain are VREF, FSW, IMOD, and N. Figure 58 illustrates a plot of raw count 
versus sensor capacitance. 
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raw count

CS

CP CP+CF

CF

maximum  raw count = 2
N
-1

CapSense Signal

0

Slope of the line = GC

 

Figure 58 Raw count versus sensor capacitance 

The change in raw counts when a finger is placed on the sensor is called CAPSENSE™ signal. Figure 59 shows 
how the value of the signal changes with respect to the conversion gain. 
 

raw count

CS

CP CP+CF

CF

maximum  raw count = 2
N
-1

Signal 2

0

GCSD2

GCSD1

Signal 1

Baseline 1

Baseline 2
GCSD3

GCSD3 > GCSD2 > 

GCSD1

 

Figure 59 Signal values for different conversion gains 
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Figure 59 shows three plots corresponding to three conversion gain values GCSD3, GCSD2, and GCSD1. An increase in 
the conversion gain results in higher signal value. However, this increase in the conversion gain also moves the 

raw count corresponding to CP (i.e., Baseline) towards the maximum value of raw count (2N-1). For very high 
gain values, the raw count saturates as the plot of GCSD3 shows. Therefore, you should tune the conversion gain 

to get a good signal value while avoiding saturation of raw count. Tune the CSD parameters such that when 
there is no finger on the sensor, i.e. when CS = CP, the raw count = 85% of (2N-1) as Figure 60 shows. This ensures 

maximum gain, with enough margin for the raw count to grow because of environmental changes, and not 
saturate on finger touches.  
 

raw count

CS

CP CP+CF

CF

maximum  raw count = 2
N
-1

85 % of maximum

 raw count 

Signal

0

GCSD

 

Figure 60 Recommended tuning 

Conversion gain in dual IDAC mode 

The equation for raw count in the dual IDAC mode, according to Equation 24 and Equation 12 is: 

Equation 27. Dual IDAC mode raw counts 

raw count =  GCSD CS  − (2N − 1)
 ICOMP

IMOD
 

Where,  

ICOMP = Compensation IDAC current  

GCSD is given by Equation 17 for sourcing IDAC mode and Equation 26 for sinking IDAC mode.  

In both single IDAC and dual IDAC mode, tune the CSD parameters, so that when there is no finger on the 
sensor, i.e. when CS = CP, the raw count = 85% of (2N-1), as Figure 61 shows, to ensure high conversion gain, to 

avoid Flat-spots, and to avoid raw count saturation due to environmental changes.  
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Figure 61 Recommended tuning in dual IDAC mode 

As Figure 61 shows, the 85% requirement restricts to a fixed gain in single-IDAC mode, while in dual-IDAC 
mode, gain can be increased by moving the CS axis intercept to the right (by increasing ICOMP) and 
correspondingly decreasing the modulator IDAC (IMOD) to still achieve raw count = 85% of (2N-1) for CS = CP. Using 

dual IDAC mode this way brings the following changes to the Raw Count versus CP graph: 

a) Use of compensation IDAC introduces a non-zero intercept on the CS axis as given in Equation 28. 

Equation 28. CS axis intercept with regards to ICOMP 

CS axis intercept = (
 ICOMP

VREF  FSW
) 

The value of IMOD in the dual IDAC mode is half compared to the value of IMOD in the single IDAC mode (all other 
parameters remaining the same), so the gain GCSD in the dual IDAC mode is double the gain in the single IDAC 

mode according to Equation 17. Thus, the signal in the dual IDAC mode is double the signal in the single IDAC 

mode for a given resolution N. 

While manually tuning a sensor, keep Equation 17 and Equation 18 as well as the following points in mind: 

1. Higher gain leads to increased sensitivity and better overall system performance. However, do not set the 

gain such that raw counts saturate, as the plot of gain GCSD3 shows in Figure 59. It is recommended to set the 
gain in such a way that the raw count corresponding to CP is 85 percent of the maximum raw count for both 
the single IDAC and dual IDAC mode. 

 
The sense clock frequency (FSW) should be set carefully; higher the frequency, higher the gain, but the 

frequency needs to be low enough to fully charge and discharge the sensor as Equation 22 indicates. 

2. Enabling the Compensation IDAC plays a huge role in increasing the gain; it will double the gain if set as 
recommended above. Always enable the Compensation IDAC when it is not being used for general-purpose 

applications. 

3. Lower the modulation IDAC current, higher the gain. Adjust your IDAC to achieve the highest gain, but make 

sure that the raw counts corresponding to CP have enough margin for environmental changes such as 
temperature shifts, as indicated in Figure 60 and Figure 61. 
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4. Increasing the number of bits of resolution used for scanning increases gain. An increase in resolution by 
one bit will double the gain of the system, but also double the scan time according to Equation 8. A balance 

of scan time and gain needs to be achieved using resolution. 

5.3.2.1.2 Flat-spots 

Ideally, raw counts should have a linear relationship with sensor capacitance as Figure 58 and Figure 61 show. 
However, in practice, sigma delta modulators have non-sensitivity zones, also called flat-spots or dead-zones – 
for a range of sensor capacitance values, the sigma delta modulator may produce the same raw count value as 

Figure 62 shows. This range is known as a dead-zone or a flat-spot.  
 

raw count

CS0

25%

50%

75%

2
N
-1

CP1 CP2 CP3 CP4 CP5 CP6

Flat spots

 

Figure 62 Flat-spots in raw counts versus sensor capacitance when direct clock is used 

In the case of CAPSENSE™ CSD, these flat spots occur near 25, 50, and 75 percent of the maximum raw count 
value (that is, near 25%, 50%, and 75% of 2N-1, where N = Scan resolution). These flat spots are prominent 

when direct clock is used as Sense clock source. Flat-spots do not occur if PRS is used as the Sense Clock 
source (see also section Using SmartSense to determine hardware parameters. 

For almost all systems, we recommend using PRS as the Sense Clock source because it limits the impact of flat 

spots and also provides EMI/EMC benefits as indicated in Sense clock. If your system requires a direct clock, 
ensure that you use auto-calibration or avoid this raw count range when using manual calibration. 

Flat-Spots Reduction Techniques 

5. Calibrate rawcount to 85%. 

In the case of CAPSENSE™ CSD, these flat-spots occur near 25, 50, and 75 percent of the maximum raw count 
value (that is, near 25%, 50%, and 75% of 2N-1, where ‘N’ is the Scan resolution). Setting calibration to 85% 
decrease the width of flat-spots significantly. 

6. Use PRS clock 

These flat-spots are prominent when direct clock is used as Sense clock source. Flat-spots do not occur if PRS 
is used as the Sense Clock source (see also sectionUsing SmartSense to determine hardware parameters . 
For almost all systems, we recommend using PRS as the Sense Clock source because it limits the impact of flat-

spots and also provides EMI/EMC benefits as indicated in Sense clock sourceSense clock . If your system 

requires a direct clock, ensure that you use auto-calibration or avoid this raw count range when using manual 

calibration. 
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5.3.2.2 Selecting CAPSENSE™ hardware parameters 

CAPSENSE™ hardware parameters govern the conversion gain and CAPSENSE™ signal. Table 8 lists the 
CAPSENSE™ hardware parameters that apply to CSD sensing method. The following subsection gives guidance 

on how to adjust these parameters to achieve optimal performance for CAPSENSE™ CSD system. 

For simplicity of documentation, this design guide shows selecting the CAPSENSE™ parameters in PSoC™ 

Creator. You can use the same procedure to set the parameters in ModusToolbox™. However, in 
ModusToolbox™, you set the Sense clock and Modulator clock using divider values while in the PSoC™ Creator 
you specify the frequency value directly in the configurator. For more details on configuring CAPSENSE™, see 
the Component datasheet / middleware document.  

 CAPSENSE™ component hardware parameters 

Sl. No. CAPSENSE™ parameter in PSoC™ Creator CAPSENSE™ parameter in ModusToolbox™ 

1 Sense cock frequency Sense clock divider 

2 Sense clock source  Sense clock source 

3 Modulator clock frequency Modulator clock divider 

4 Modulator IDAC Modulator IDAC 

5 Compensation IDAC Compensation IDAC 

6 Scan resolution Scan resolution 

5.3.2.2.1 Using SmartSense to determine hardware parameters 

Parameters listed in Table 8 are CAPSENSE™ hardware parameters. Tuning these parameters manually for 

optimal value is a time-consuming task. You can use SmartSense to determine these hardware parameters and 

take it as an initial value for manual tuning. You can fine-tune these values to further optimize the scan time, 

SNR, power consumption, or improving EMI/EMC capability of the CAPSENSE™ system. 

Set the tuning mode to SmartSense and configure default values for parameters other than finger capacitance. 
See the SmartSense section for the tuning procedure and use the Tuner GUI to read back all the hardware 
parameters set by SmartSense. See the Component datasheet / middleware document for more details on 

how to use the Tuner GUI.  

Figure 63 shows the best hardware parameter values in the Tuner GUI that are tuned by SmartSense for a 

specific hardware to sense a minimum finger capacitance of 0.1 pF. 
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Figure 63 Read-back hardware parameter values in Tuner GUI 

5.3.2.2.2 Manually tuning hardware parameters 

Sense clock parameters 

There are two parameters that are related to Sense clock: Sense clock source and Sense clock frequency.  

Sense clock source 

Select “Auto” to let the Component automatically choose the best Sense clock source from Direct, PRSx, and 
SSCx for each widget. If not selecting Auto, select the clock source based on the following: 

• Use pseudo random sequence (PRSx) modes to remove flat-spots. 

• Use spread spectrum clock (SSCx) modes for reducing EMI/EMC noise at a particular frequency. This feature 

is available in PSoC™ 4 S-Series, PSoC™ 4100S Plus, PSoC™ 4100PS, and PSoC™ 6 family of devices. In this 

case, the frequency of the sense clock is spread over a predetermined range. 

• Use Direct clock for absolute capacitance measurement.  

When selecting PRSx as the sense clock source, ensure that the sequence completes within one conversion 
cycle; not letting the sequence complete may cause high noise in raw count. i.e., TPRS<<TSCAN. 

For PRS clock, use the following equations to calculate one PRS sequence completion cycle and scan time. 

Equation 29. Sensor scan time 

TSCAN =
2N−1

FMOD
 , ℎ𝑒𝑟𝑒 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑆𝑐𝑎𝑛 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 
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Equation 30. PRS sequence period 

TPRS =
2N_PRS−1

FSW
 , ℎ𝑒𝑟𝑒 𝑁_𝑃𝑅𝑆 𝑖𝑠 𝑒𝑖𝑡ℎ𝑒𝑟 8 𝑜𝑟 12 

See the Component datasheet / middleware document for more details on the rules and recommendations 
for SSCx selection. 

Sense clock frequency 

The sense clock frequency should be selected so that the sensor will charge and discharge completely in each 
sense clock period as Figure 39 shows. 

This requires that the maximum sense clock frequency be chosen per Equation 31. 

Equation 31. Sense clock maximum frequency 

𝐅𝐒𝐖(𝐦𝐚𝐱𝐢𝐦𝐮𝐦) =  
𝟏

𝟏𝟎𝐑𝐒𝐞𝐫𝐢𝐞𝐬𝐓𝐨𝐭𝐚𝐥𝐂𝐏
 

 

Equation 32. Total series resistance 

RSeriesTotal = REXT + RGPIO   

Here, CP is the sensor parasitic capacitance, and RSeriesTotal is the total series-resistance, including the 500  

resistance of the internal switches, the recommended external series resistance of 560  (connected on PCB 
trace connecting sensor pad to the device pin), and trace resistance if using highly resistive materials (example 

ITO or conductive ink); i.e., a total of 1.06 k plus the trace resistance. 

The value for CP can be estimated using the CSD Built-in-Self-test API; GetSensorCapacitance(). See the 

Component datasheet / middleware document for details. 

Equation 25 shows that it is best to use the maximum clock frequency to have a good gain; however, you 
should ensure that the sensor capacitor fully charges and discharges as shown in Figure 39.  

Generally, the CP of the shield electrode will be higher compared to sensor CP. For good liquid tolerance, the 
shield signal should satisfy the condition mentioned in Shield electrode tuning theory. If it is not satisfied, 
reduce the sense clock frequency further to satisfy the condition.  

Modulator clock frequency 

The modulator clock governs the conversion time for capacitance-to-digital conversion, also called the “sensor 
scan time” (see Equation 8).  

A lower modulator clock frequency implies the following: 

Longer conversion time (see Equation 22 and Equation 20) 

• Lower peak-to-peak noise on raw count because of longer integration time of the sigma-delta converter 

• Wider Flat-spots 

Select the highest frequency for the shortest conversion time and narrower flat spots for most cases. Use 

slower modulator clock to reduce peak-to-peak noise in raw counts if required. 
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Modulation and compensation IDACs 

CSD supports two IDACs: Modulation IDAC and Compensation IDAC that charge CMOD as Figure 35 shows. These 
govern the Conversion gain in dual IDAC mode for capacitance-to-digital conversion. The CapSense 
Component allows the following configurations of the IDACs: 

• Enabling or disabling of Compensation IDAC 

• Enabling or disabling of Auto-calibration for the IDACs 

• DAC code selection for Modulator and Compensation IDACs if auto-calibration is disabled 

Compensation IDAC 

Enabling the compensation IDAC is called “dual IDAC” mode, and results in increased signal as explained in 
Conversion gain in dual IDAC modeConversion gain in dual IDAC . Enable the compensation IDAC for most 

cases. Disable the compensation IDAC only if you want to free the IDAC for other general-purpose analog 

functions. 

Auto-calibration 

This feature enables the firmware to automatically calibrate the IDAC to achieve the required calibration target 

of 85%. It is recommended to enable auto-calibration for most cases. Enabling this feature will result in the 
following: 

• Fixed raw count calibration to 85% of max raw count even with part-to-part CP variation 

• Avoids Flat-spots 

• Automatically selects the optimum gain 

If your design environment includes large temperature variation, you may find that the 85% IDAC calibration 

level is too high, and that the raw counts saturate easily over large changes in temperature, leading to lower 
SNR. If this is the case, you can adjust the calibration level lower by using CapSense_CSDCalibrateWidget() 

in your firmware.  

For proper functioning of CAPSENSE™ under diverse environmental conditions, it is recommended to avoid 

very low or high IDAC codes. For a 7-bit IDAC, it is recommended to use IDAC codes between 18-110 from the 
possible 0 to 127 range. You can use CAPSENSE™ tuner to confirm that the auto-calibrated IDAC values fall in 

this recommended range. If the IDAC values are out of the recommended range, based on Equation 24, 

Equation 25 and Equation 27, you may change the  Vref or Fsw to get the IDAC code in proper range.  

Disable IDAC auto-calibration if a change in CP needs to be detected by measuring the raw count level at reset, 
for example: 

• Detecting large variations in sensor CP across boards or layout problems 

• Detecting finger touch at reset 

• Advanced CAPSENSE™ methods like liquid-level sensing, for example, to have different raw count level for 
different liquid levels at reset 

Selecting DAC codes 

This is not the recommended approach. However, this could be used only If you want to disable auto-

calibration for any reason. To get the IDAC code, you may first configure CAPSENSE™ Component with auto-
calibration enabled and all other hardware parameters the same as required for final tuning and read back the 
calibrated IDAC values using Tuner GUI. Then, re-configure the CAPSENSE™ Component to disable auto-
calibration and use the obtained IDAC codes as fixed DAC codes read-back from the Tuner GUI.   
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Scan resolution  

It governs the sensor scan time per Equation 29 and the conversion gain per Equation 24, Equation 25, and 
Equation 27. Scan resolution needs to be selected to maintain a balance between the signal and scan time.  

Higher scan resolution implies the following: 

• Longer scan time per Equation 29 

• Higher SNR on raw counts (increase in resolution increases the signal at a disproportionate rate to noise) 

In general, it is recommended to tune the resolution to achieve as high SNR as possible; however if the system 
is constrained on power consumption and/or response time, set the lowest resolution to achieve at-least 5:1 
SNR in the end system. Note that you should tune the scan resolution for less than 10:1 SNR only if you have 
scan time or power number constraints. 

5.3.2.2.3 Tuning shield electrode 

The shield related parameters need to be additionally configured or tuned differently when you enable the 

Shield electrode in the CSD sensing method for liquid tolerance or reducing the Cp of the sensor. 

Shield electrode tuning theory 

Ideally, the shield waveform should be exactly the same as that of the sensor as explained in Driven-shield 
signal and shield electrode. However, in practical applications, the shield waveform may have a higher 

settling time and an overshoot error. Observe the sensor and shield waveform in the oscilloscope; an example 
waveform is shown in Driven-shield signal and shield electrode. The shield waveform should settle to the 

sensor voltage within 90% of ON time of the sense clock waveform and the overshoot error of the shield signal 
with respect to VREF should be less than 10%. 

If these conditions are not satisfied, you will observe a change in raw count of the sensors when touching the 
shield hatch; in addition, if inactive sensors are connected to shield as mentioned in Inactive sensor 

connection, touching one sensor can cause change in raw count on other sensors, which indicates that there is 

cross talk if the shield electrode is not tuned properly. 

In SmartSense, the sense clock frequency is automatically set. Check if these conditions are satisfied. If not 
satisfied, switch to Manual tuning and set the Sense clock frequency manually so that these conditions are 
satisfied. You can also tune the Shield SW resistance parameter to reduce the overshoot error. 

 

Figure 64 Properly tuned shield waveform 
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Tuning shield-related parameters 

Enable shield tank capacitor 

Enabling a shield tank capacitor increases the drive strength of the shield thus allowing the shield signal to 
settle to the sensor voltage faster as required. It is recommended to use the shield tank capacitor for PSoC™ 4A-

S and PSoC™ 6 MCU family of devices. For PSoC™ 4A, PSoC™ 4A-L, and PSoC™ 4A-M family of devices, the shield 
tank capacitor does not prove very advantageous because it doubles the shield series resistance. It is 

recommended to keep this option disabled for these device families.  

Shield electrode delay 

For proper operation of the shield electrode, the shield signal should match the sensor signal in phase. Due to 
the difference in trace lengths of the sensor and shield electrodes, the shield waveform may arrive earlier to the 

sensor waveform. You can use an oscilloscope to view both sensor and shield signals to verify this condition. If 
they are not aligned, use this option to add delay to the shield signal to align the two signals. Available delays 

vary depending on the device selected.  

Shield SW resistance 

This parameter controls the shield signal rise and fall times to reduce EMI. This parameter is valid only for 

PSoC™ 4 S-Series, PSoC™ 4100S Plus, PSoC™ 4100PS, and PSoC™ 6 MCU family of devices. The default value of 
shield switch resistance is Medium. Table 9 shows the effect of the Shield SW resistance value. You should 

select this value based on the application requirement; in addition, ensure that it satisfies the conditions in 
Shield electrode tuning theory. 

 Shield SW resistance selection guidelines 

Lower switch resistance Higher switch resistance 

Large overshoot error 

Higher electromagnetic emission  

Faster settling time i.e., higher max sense clock 

frequency 

Smaller overshoot error 

Lower electromagnetic emission 

Slower settling time i.e., lower max sense clock 

frequency 

Number of shield electrodes 

This parameter specifies the number of shield electrodes required in the design. Most designs work with one 
dedicated shield electrode; however, some designs require multiple dedicated shield electrodes for ease of 

PCB layout routing or to minimize the PCB real estate used for the shield layer. See Layout guidelines for 
shield electrode.  

Inactive sensor connection 

When the shield electrode is enabled for liquid-tolerant designs, or if you want to use shield to reduce the 
sensor parasitic capacitance, this option should be specified as “Shield”; otherwise, select “Ground”.  

However, there is a risk of higher radiated emission due to inactive sensors getting connected to Shield. In such 
situations, use the CAPSENSE™ API to manually control inactive sensor connections. Instead of connecting all 
unused sensors to the shield, connect only the opposing inactive sensors or inactive sensors closer to the 

sensor being scanned to shield for reducing the radiated emission.  
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5.3.2.3 Selecting CAPSENSE™ software parameters 

CAPSENSE™ software parameters govern the sensor status based on the raw count of a sensor. Table 10 
provides a list of CAPSENSE™ software parameters. These parameters apply to both CSD and CSX sensing 

methods. This section defines these parameters with the help of Baseline, and provides guidance on how to 
adjust these parameters for optimal performance of your design. Table 11 shows the recommended values for 
the software threshold parameter and they are applicable for most of the designs. However, if there are any 
external noise present in the end system, you must modify these thresholds accordingly to avoid any sensor 

false trigger. 

 CAPSENSE™ component widget threshold parameters 

Sl. No. CAPSENSE™ component parameter name in PSoC™ Creator / ModusToolbox™ 

1. Finger threshold 

2. Noise threshold 

3. Hysteresis 

4. ON debounce 

5. Sensor auto-reset 

6. Low baseline reset 

7. Negative noise threshold 

 

 Recommended values for the threshold parameters 

Sl. No. CAPSENSE™ threshold parameter Recommended value 

1. Finger threshold 80 percent of signal 

2. Noise threshold 40 percent of signal 

3. Hysteresis 10 percent of signal 

4. ON debounce 3 

5. Low baseline reset 30 

6. Negative noise threshold 40 percent of signal 

5.3.2.3.1 Baseline 

After tuning the CAPSENSE™ Component for a given CP, the raw count value of a sensor may vary gradually due 
to changes in the environment such as temperature and humidity. Therefore, the CAPSENSE™ Component 

creates a new count value known as baseline by low-pass filtering the raw counts. Baseline keeps track of, and 
compensates for, the gradual changes in raw count. The baseline is less sensitive to sudden changes in the raw 
count caused by a touch. Therefore, the baseline value provides a reference level for computing signal. 

Figure 65 shows the concept of raw count, baseline, and signal.  
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baseline

raw count

signal = raw count - baseline

sensor OFF sensor OFFsensor ON

 

Figure 65 Raw count, baseline, and signal 

5.3.2.3.2 Baseline update algorithm 

To properly tune the CAPSENSE™ software, that is, the threshold parameters, it is important to understand how 
baseline is calculated and how the threshold parameters affect the baseline update. 

Baseline is a low-pass-filtered version of raw counts. As Figure 66 shows, baseline is updated by low-pass-

filtering raw counts if the current raw count is within a range of (Baseline –Negative noise threshold) to 

(Baseline + Noise threshold). If the current raw count is higher than baseline by a value greater than noise 

threshold, baseline remains at a constant value equal to prior baseline value.  
 

Noise Threshold

Negative Noise Threshold

Baseline

Baseline Is Not Updated

Baseline Updates

 

Figure 66 Baseline update algorithm 
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If the current raw count is below baseline minus negative noise threshold, baseline again remains constant at a 
value equal to prior baseline value for Low baseline reset number of sensor scans. If the raw count 

continuously remains lower than baseline minus noise threshold for low baseline reset number of scans, the 
baseline is reset to the current raw count value and starts getting updated again, as Figure 67 shows. 
 

Negative Noise Threshold

Raw Count falls below baseline by a count 

> Negative noise threshold

Baseline gets reset and starts Updating 

again

Baseline remains constant for Low-

Baseline-Reset number of scans

 

Figure 67 Low baseline reset 

5.3.2.3.3 Finger threshold 

The finger threshold parameter is used along with the hysteresis parameter to determine the sensor state, as 

Equation 33 shows.  

Equation 33. Sensor state 

Sensor State =  {
ON   if (Signal ≥ Finger Threshold + Hysteresis)

OFF  if (Signal ≤ Finger Threshold − Hysteresis)
 

Note that signal in the above equation refers to the difference: raw count – baseline, when the sensor is 
touched, as Figure 65 shows. 

It is recommended to set finger threshold to 80 percent of the signal. This setting allows enough margin to 

reliably detect sensor ON/OFF status over signal variations across multiple PCBs. 

5.3.2.3.4 Hysteresis 

The hysteresis parameter is used along with the finger threshold parameter to determine the sensor state, as 
Equation 33 and Figure 68 show. Hysteresis provides immunity against noisy transitions of sensor state. The 
hysteresis parameter setting must be lower than the finger threshold parameter setting. It is recommended to 

set hysteresis to 10 percent of the signal. 
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Sensor ONSensor OFF Sensor OFF

Finger Threshold + Hysteresis

Finger Threshold - Hysteresis

Finger Threshold

 

Figure 68 Hysteresis 

5.3.2.3.5 Noise threshold 

For single-sensor widgets, such as buttons and proximity sensors, the noise threshold parameter sets the raw 
count limit above which the baseline is not updated, as Figure 66 shows. In other words, the baseline remains 
constant as long as the raw count is above baseline + noise threshold. This prevents the baseline from following 
raw counts during a finger touch.  

The noise threshold value should always be lower than the finger threshold – hysteresis. It is recommended to 

set noise threshold to 40 percent of the signal. 

If the noise threshold is set to a low value, the baseline will remain constant if raw counts suddenly increase by 
a small amount, say because of small shifts in power supply or shifts in ground voltage because of high GPIO 

sink current and so on. 

On the other hand, if the noise threshold is set to a value close to finger threshold – hysteresis, the baseline may 

keep updating even when the sensor is touched. This will lead to reduced signal (note that signal = raw count – 
baseline) and the sensor state may not be reported as ON. 

5.3.2.3.6 Negative noise threshold 

The negative noise threshold parameter sets the raw count limit below which the baseline is not updated for 
the number of samples specified by the low baseline reset parameter as Figure 67 shows.  

Negative noise threshold ensures that the baseline does not fall low because of any high amplitude repeated 

negative noise spikes on raw count caused by different noise sources such as electrostatic discharge (ESD) 
events.  

It is recommended to set the negative noise threshold parameter value to be equal to the noise threshold 
parameter value. 
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5.3.2.3.7 Low baseline reset 

This parameter is used along with the negative noise threshold parameter. It counts the number of abnormally 
low raw counts required to reset the baseline as Figure 67 shows.  

If a finger is placed on the sensor during device startup, the baseline is initialized to the high raw count value at 
startup. When the finger is removed, raw counts fall to a lower value. In this case, the baseline should track the 

low raw counts. The Low Baseline Reset parameter helps to handle this event. It resets the baseline to the low 
raw count value when the number of low samples reaches the low baseline reset number. Note that in this 
case, when the finger is removed from the sensor, the sensor will not respond to finger touches for a low 
baseline reset time given by Equation 34. 

Equation 34. Low baseline reset time 

Low Baseline Reset Time =  
Low Baseline Reset parameter value

Scan Rate
 

The low baseline reset parameter should be set to meet following conditions:  

• Low baseline reset time is greater than the time for which negative noise (due to noise sources such as ESD 

events) is expected to last 

• Low baseline reset time is lower than the time in which a sensor is expected to start responding again after 
the finger kept on sensor during device startup is removed from the sensor. 

The low baseline reset parameter is generally set to a value of 30.  

5.3.2.3.8 Debounce 

This parameter selects the number of consecutive CAPSENSE™ scans during which a sensor must be active to 

generate an ON state from the component. Debounce ensures that high-frequency, high-amplitude noise does 
not cause false detection. 

Equation 35. Sensor state with debounce 

Sensor State =  {

ON   if (Signal ≥ Finger Threshold + Hysteresis) for scans ≥ debounce              

OFF    if  (Signal ≤ Finger Threshold − Hysteresis)                                                          

OFF     if (Signal ≥ Finger Threshold + Hysteresis) for  scans < 𝑑𝑒𝑏𝑜𝑢𝑛𝑐𝑒              

   

The Debounce parameter impacts the response time of a CAPSENSE™ system. The time it takes for a sensor to 

report ON after the raw counts value have increased above finger threshold + hysteresis because of finger 
presence, is given by Equation 36. 

Equation 36. Relationship between debounce and sensor response time 

Sensor response time =
Debounce

Scan Rate
 

The Debounce parameter is generally set to a value of ‘3’ for reliable sensor status detection. It can be raised or 
lowered based on the noise aspects of the end user system. 
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5.3.2.3.9 Sensor auto reset 

Enabling the Sensor Auto Reset parameter causes the baseline to always update regardless of whether the 
signal is above or below the noise threshold.  

When auto reset is disabled, the baseline only updates if the current raw count is within a range of (Baseline – 
Negative Noise Threshold) to (Baseline + Noise Threshold) as Figure 66 shows and the Baseline update 

algorithm describes. However, when Auto Reset is enabled, baseline is always updated if the current raw count 
is higher than (Baseline – Negative Noise Threshold) as Figure 69 shows. 
 

Noise Threshold Sensor state reported as OFF even though 

finger is still on sensor

Baseline always updates even though (Raw 

Count – Baseline) > Noise Threshold

 

Figure 69 Baseline update with sensor auto reset enabled 

Because the baseline is always updated when sensor auto reset is enabled, this setting limits the maximum 
time duration for which the sensor will be reported as pressed. However, enabling this parameter prevents the 

sensors from permanently turning on if the raw count suddenly rises without anything touching the sensor. 
This sudden rise can be caused by a large power supply voltage fluctuation, a high-energy RF noise source, or a 

very quick temperature change.  

Enable this option if you have a problem with sensors permanently turning on when the raw count suddenly 

rises without anything touching the sensor.  

5.3.2.3.10 Multi-frequency scan 

Enabling multi-frequency scan, the CAPSENSE™ component performs a sensor scan with three different sense 
clock frequencies and obtains corresponding difference count. The median of the sensor difference-count is 

selected for further processing. Use this feature for robust operation in the presence of external noise at a 
certain sensor scan frequency. This option is not available in SmartSense FullAutotune mode. See the code 
example CE227719 CAPSENSE™ with multi-frequency scan.  

 

https://www.cypress.com/documentation/code-examples/ce227719-capsense-multi-frequency-scan
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5.3.2.4 Button widget tuning 

Figure 70 illustrates an overview of the CSD button tuning procedure. 
 

Start

Measure SNR

Set initial parameters Hardware parameters

Is SNR > 5
Increase Resolution*/ 

enable filters

Does the system meet timing 
requirements?

Set the following system thresholds based on signal 
value with a finger present:

Finger Threshold = 80% of Singal
Noise Threshold = 40% of Signal

Negative Noise Threshold = 40% of Signal
Hysteresis = 10% of Signal

Debounce = 3
Low Baseline Reset = 30

End

Stage 1

Yes

Yes

No

Measure sensor parasitic capacitance (Cp)

Calculate and set Sense clock frequency and Init sub 
conversions

Stage 2

Stage 3

Stage 5

Stage 4

Decrease Resolution*/
adjust filter parameters

 

Figure 70 CSD button widget tuning flowchart 

* For fifth-generation CAPSENSE™, change number of sub-conversions (NSub) instead of resolution. 
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To review the hardware design, see the Sensor construction and PCB layout guidelines sections in the Design 
considerations chapter. Also, see the Tuning debug FAQs section for guidelines on advanced debug. 

As explained in Section 5.1, Manual tuning requires effort to tune optimum CAPSENSE™ parameters, but allows 
strict control over characteristics of capacitive sensing system, such as response time and power consumption. 
The button is tuned for reliable touch detection to avoid false triggers in noisy environment.  

The CE230926 PSoC™ 4: CAPSENSE™ CSD button tuning explains tuning of self-capacitance based button 
widgets in the Eclipse IDE for ModusToolbox™ using the CAPSENSE™ Tuner GUI. For details on the Component 

and all related parameters, see the Component datasheet.  

5.3.2.5 Slider widget tuning 

A slider has many segments, each of which is connected to the CAPSENSE™ input pins of the PSoC device. 

Unlike the simple on/off operation of a button widget sensor, slider widget sensors work together to track the 
location of a finger or other conductive object. Because of this, the slider layout design should ensure that the 

CP of all the segments in a slider remain as close as possible. Keeping similar CP values between sensors will 
help minimize the tuning effort and ensure an even response across the entire slider. See Slider design for 

details on slider layout design guidelines to avoid nonlinearity in the centroid, ensure that the signal from all 

the slider segments is equal, as Figure 71 shows, when a finger is placed at the center of the slider segment. If 
the signal of the slider segments is different, then the centroid will be nonlinear, as Figure 72 shows. Note that 

in PSoC™ Creator and in ModusToolbox™, a centroid of 0xFFFF and 0x0000 is reported respectively when a 

finger is not detected on the slider, or when none of the slider segments report a difference count value greater 
than the Finger Threshold parameter. 
 

 

Figure 71 Response of centroid versus finger location when signals of all slider elements are equal 

Note: Signal = Raw Count – Baseline 
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https://github.com/Infineon/mtb-example-psoc4-capsense-csd-button-tuning
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
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Figure 72 Response of centroid versus finger location when the signal of all slider elements are 

different 

A linear response for the reported finger position (that is, the Centroid position) versus the actual finger 
position on a slider requires that the slider design is such that whenever a finger is placed anywhere between 
the middle of the segment SLDn and middle of segment SLDn-1, other than the exact middle of slider segments, 

exactly two sensors report a valid signal9. If a finger is placed at the exact middle of any slider segment, the 

adjacent sensors should report a difference count = noise threshold. These conditions are required since the 
centroid position calculation is based on the closest segment to the finger and two neighboring segments as 
shown in Equation 37. 

Equation 37. Centroid algorithm used by CAPSENSE™ component in PSoC™ Creator 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (
𝑆𝑥+1 − 𝑆𝑥−1

𝑆𝑥+1 + 𝑆𝑥 + 𝑆𝑥−1
+ 𝑥) ∗

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

(𝑛 − 1)
 

Where, 
Resolution = API resolution set in the CAPSENSE™ Component Customizer 

n = Number of sensor elements in the CAPSENSE™ Component Customizer 

𝑥 = Index of element which gives maximum signal 

𝑆𝑖 = Different counts (with subtracted noise threshold value) of the slider segment 
 

Figure 73 shows an overview of the CSD slider tuning procedure. 

                                                                    
9 Here, a valid signal means that the difference count of the given slider segment is greater than or equal to the noise threshold value.  
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Set initial hardware parameters
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Figure 73 CSD slider widget tuning flowchart 

*For fifth-generation CAPSENSE™, change number of sub-conversions (NSub)  instead of resolution. 
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The upper crossover point (UCP) and lower crossover point (LCP) are obtained as shown in Figure 74. Refer to 
CE229521 – PSoC™ 4 CAPSENSE™ CSD Slider tuning which demonstrates how to manually tune a self-

capacitance based Slider widget on PSoC™ Creator and CE230493 – PSoC™ 4: CAPSENSE™ CSD Slider tuning 
on Eclipse IDE for ModusToolbox™. 
 

 

Figure 74 Difference count (delta) vs finger position 

5.3.2.6 Touchpad widget tuning 

A self-capacitance-based touchpad is essentially two sliders implemented in the horizontal and vertical 
directions. Hence, it is also tuned in a similar way as that of a slider, to obtain an even response across the 
trackpad/touchpad. To gain true multi-touch performance, it is recommended to use mutual-capacitance 

based touchpad. The centroid algorithm obtains the signals (diff-counts) from all the segments and calculates 

the x and y position co-ordinates. 

The CSD Touchpad reuses Slider’s centroid algorithm that is applied individually to row and column sensors 
treated as simple sliders. Hence, the centroid position calculation formula for CSD Touchpad is same as 

Equation 37. 

5.3.2.6.1 CSD finger detection criteria 

The touch in a CSD Touchpad is reported to the host when the following Finger detection criteria is satisfied: 
 

1. 𝑍_𝑃𝑒𝑎𝑘 > (𝐹𝑖𝑛𝑔𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ± 𝐻𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠) 
2. 𝑍_𝑃𝑒𝑎𝑘 > (𝐹𝑖𝑛𝑔𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ± 𝐻𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠) ∗ 𝑍3_𝐹𝑖𝑙𝑡_𝑆𝑐𝑎𝑙𝑒/2 → (At panel edge) 

3. 𝑍_𝑃𝑒𝑎𝑘 > (𝐹𝑖𝑛𝑔𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ± 𝐻𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠) ∗ 𝑍3_𝐹𝑖𝑙𝑡_𝑆𝑐𝑎𝑙𝑒/4 → (At panel corner) 

 

Where, 
 

Z_Peak = Maximum Signal when the finger is present at the centre of the sensor 

 
Z3_sum = Sum of Signals of segment with maximum signal and two neighbouring segments    
 
Z3_Filt_Scale = (0.8 * Z3_Sum) / Finger Threshold 

 
The Z3_Filt_Scale value ensures that the detected object is of the correct proportions. 
Z3_sum (of both row and column) condition is checked to see if the absolute mass of the finger is large enough 
to be recognized as a finger. The Z3_sum condition may prevent noise-induced false touches. 

https://www.cypress.com/documentation/code-examples/ce229521-psoc-4-capsense-csd-slider-tuning
https://github.com/Infineon/mtb-example-psoc4-capsense-csd-slider-tuning
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Figure 75 Z3_sum values on CAPSENSE tuner 

Figure 76 shows an overview of the CSD touchpad tuning procedure.  
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Figure 76 CSD touchpad widget tuning flowchart 

*For fifth-generation CAPSENSE™, change number of sub-conversions (NSub)  instead of resolution. 
LTI measures the peak diff-count when a finger touch is centered between four sensors. The LTI signal count is 
the average of the four peak sensors. This gives the least valid touch signal. 

5.3.2.7 Proximity widget tuning 

For tuning a proximity sensor, see AN92239 - Proximity sensing with CAPSENSE™. 

http://www.cypress.com/documentation/application-notes/an92239-proximity-sensing-capsense
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5.3.3 CSX sensing method (third- and fourth-generation) 

This section explains the basics of manual tuning using the CSX sensing method. It also explains the hardware 
parameters that influence a manual tuning procedure. 

5.3.3.1 Basics 

5.3.3.1.1 Conversion gain and CAPSENSE™ signal 

In a mutual-capacitance sensing system, the Rawcountcounter is directly proportional to the mutual-capacitance 
between the Tx and Rx electrodes, as Equation 38 shows. 

Equation 38. Raw count relationship to sensor capacitance 

RawcountCounter  =  GCSX CM 

Where, 
GCSX = Capacitance to digital conversion gain of CAPSENSE™ CSX 
CM = Mutual-capacitance between the Tx and Rx electrodes.  

Figure 78 shows the relationship between raw count and mutual capacitance of the CSX sensor. The tunable 

parameters of the conversion gain in Equation 39 are FTX, NSub, FMOD and IDAC.  

The approximate value of this conversion gain is: 

Equation 39. Capacitance to digital converter gain 

GCSX =   
2 VTX FTX MaxCount 

IDAC
 

Equation 40. MaxCount equation 

MaxCount =
FMod NSub

FTX
 

Where,  

VTX = Voltage at the Tx node of the sensor as shown in Figure 77  

VTX = VON − VOFF 

The value of VTX is always VDDIO or VDDD (if VDDIO is not available) if the Tx clock frequency can completely charge 
and discharge the Tx electrode. FTX is the Tx clock frequency, IDAC is the current drawn for charging and 

discharging the CINT capacitors, and NSub is the number of sub-conversions. 
 

V

t

VOFF

0

T = 1/FTX

VON

 

Figure 77 Voltage at Tx node of the CSX sensor 
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Note that the raw count observed from the Component is given by Equation 41. See CAPSENSE™ CSX sensing 
method (third- and fourth-generation) for more details on Rawcountcomponent. 

Equation 41. 𝑅𝑎𝑤𝑐𝑜𝑢𝑛𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 

𝑅𝑎𝑤𝑐𝑜𝑢𝑛𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑀𝑎𝑥𝐶𝑜𝑢𝑛𝑡 − 𝑅𝑎𝑤𝑐𝑜𝑢𝑛𝑡𝐶𝑜𝑢𝑛𝑡𝑒𝑟 
 

 

Figure 78 Raw count vs Sensor mutual-capacitance 

5.3.3.2 Selecting CAPSENSE™ hardware parameters 

CAPSENSE™ hardware parameters govern the conversion gain and. Table 12 lists the CAPSENSE™ hardware 

parameters that apply to the CSX sensing method. Table 12 also shows the mapping of each parameter in the 

PSoC™ Creator CAPSENSE™ component to the one in the ModusToolbox™ middleware. For simplicity of 

documentation, this design guide shows selecting the CAPSENSE™ parameter using the CAPSENSE™ 

configurator in PSoC™ Creator. The same procedure could be followed in configuring CAPSENSE™ in 
ModusToolbox™. However, in ModusToolbox™, you set the Tx clock and Modulator clock using divider values. 
On the other hand, in PSoC™ Creator, you specify the frequency value directly in the configurator. See 

Component datasheet / middleware document. 

 CAPSENSE™ signal component hardware parameters 

Sl # CAPSENSE™ parameter in PSoC™ Creator  CAPSENSE™ parameter in ModusToolbox™ 

1 Modulator clock frequency Modulator clock divider 

2 Tx clock source Tx clock source 

3 Tx clock frequency Tx clock divider 

4 IDAC IDAC 

5 Number of sub-conversions Number of sub-conversions 
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5.3.3.2.1 Tx clock parameters 

There are two parameters that are related to the Tx clock: Sense clock source and Sense clock frequency.  

Tx clock source 

Select “Auto” to let the Component automatically choose the best Tx clock source between Direct and Spread 
spectrum clock (SSCx) for each widget. If not selecting Auto, select the clock source based on the following: 

• Direct – Clock signal with a fixed clock frequency. 

Use this option for most cases. 

• Spread spectrum clock (SSCx) – If you chose this option, the Tx clock signal frequency is dynamically spread 

over a predetermined range. Use this option for reduced EMI interference and avoiding Flat-spots.  

However, when selecting SSCx clock, you need to select the Tx clock frequency, Modulator clock frequency, 
and number of sub conversion such that the conditions mentioned in Component datasheet / 

ModusToolbox™ CAPSENSE™ configurator guide for SSCx clock source selection are satisfied. 

Tx clock frequency 

The Tx clock frequency determines the duration of each sub-conversion as explained in the CAPSENSE™ CSX 

sensing method (third- and fourth-generation) section. The Tx clock signal must completely charge and 

discharge the sensor parasitic capacitance; it can be verified by checking the signal in an oscilloscope, or it can 

be set using the Equation 42. In addition, you should ensure that the auto-calibrated IDAC code lies in the mid-
range (for example, 30-90) for the selected FTX. If the auto-calibrated IDAC code lies out of the recommended 
range, tune FTX such that it IDAC falls in the recommended range and satisfies Equation 42. 

Equation 42. Condition for selecting Tx clock frequency 

FTX <
1

10RSeriesTxCPTx
 

To minimize the scan time, as Equation 43 shows, it is recommended to use the maximum Tx clock frequency 
available in the component drop-down list that satisfies the criteria.   

Equation 43. Scan time of CSX sensor 

T𝐶𝑆𝑋 =
NSub

FTX
 

Where, NSub = Number of sub-conversions.  

Additionally, if you are using the SSCx clock source, ensure that you select the Tx clock frequency that meets 

the conditions mentioned in Component datasheet / middleware document / ModusToolbox™ CAPSENSE™ 

configurator guide in addition to these conditions.  

The maximum value of FTX depends on the selected device. For the PSoC™ 4 S-Series, PSoC™ 4100S Plus, 
PSoC™ 4100PS, and PSoC™ 6 MCU family of devices, the maximum FTX is 3000 kHz and for other devices it is 300 
kHz. 

 

 

http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
https://www.cypress.com/file/455231/download
https://www.cypress.com/file/455231/download
https://www.cypress.com/file/455231/download


  

 

 

Application Note 98 of 229 001-85951 Rev. AA  

   2021-10-01 

 

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide 
  

CAPSENSE™ performance tuning 

  

5.3.3.2.2 Modulator clock frequency 

It is best to choose the highest allowed clock frequency for the given device because a higher modulator clock 
frequency leads to a higher sensitivity/signal, increased accuracy, and lower noise for a given CM to digital count 

conversion as Equation 30 and Equation 31 indicate. Also, a higher value of Fmod/Ftx ensures lower width of 
Flat- in CM to raw count conversion. 

5.3.3.2.3 IDAC 

It is recommended to enable IDAC auto-calibration. It is best to avoid very high and very low IDAC codes. The 
recommended IDAC code range is between 30-90. If the IDAC values are away from the recommended range, 
tune the Tx clock frequency to adjust the IDAC level. If the IDAC is failing to calibrate properly, it may be due to 

low CM in the design. Refer to the section I am observing a low CM for my CSX button for mitigating impact of 

low CM in the design. 

5.3.3.2.4 Number of sub-conversions 

The number of sub-conversions decides the sensitivity of the sensor and sensor scan time. From Equation 14 
for a fixed modulator clock and Tx clock, increasing the number of sub-conversions (𝑁𝑆𝑢𝑏) increases the signal 
and SNR. However, increasing the number of sub-conversions also increases the scan time of the sensor per 

Equation 44. 

Equation 44. CSX scan time 

Scan time =
NSub

FTX
 

Initially, set the value to a low number (for example, 20), and use the Tuner GUI to find the SNR of the sensor. If 

the SNR is not > 5:1 with the selected NSub, try to increase the NSub in steps such that the SNR requirement is 

met. 

5.3.3.3 Selecting CAPSENSE™ software parameters 

CAPSENSE™ software parameters for mutual-capacitance are the same as that for self-capacitance; therefore, 

these parameters could be selected as mentioned in the section Selecting CAPSENSE™ software parameters.  

5.3.3.4 Button widget tuning 

Figure 79 illustrates an overview of the CSX button tuning procedure. 
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Start
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Set initial parameters Hardware parameters

Is SNR > 5
Increase Number of 

sub conversion/ 
enable filters

Does the system meet timing 
requirements?

Set the following system thresholds based on signal 
value with a finger present:

Finger Threshold = 80% of Singal
Noise Threshold = 40% of Signal

Negative Noise Threshold = 40% of Signal
Hysteresis = 10% of Signal

Debounce = 3
Low Baseline Reset = 30

End

Stage 1

Yes

Yes

No

Measure sensor parasitic capacitance (Cp)

Calculate and set Tx clock frequency

Stage 2

Stage 3

Stage 5

Stage 4

Decrease Number of 
Sub conversion/adjust 

filter parameters

 

Figure 79 CSX button widget tuning example 
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* To review the hardware design, see the Sensor construction and PCB layout guidelines sections in the 
Design considerations chapter. Also, see the Tuning debug FAQs section for guidelines on advanced debug. 

The CE230660 PSoC™ 4: CAPSENSE™ CSX button tuning explains tuning of mutual-capacitance based button 
widgets in the Eclipse IDE for ModusToolbox™ and CE228931 – PSoC™ 4 CAPSENSE™ CSX button tuning in 
PSoC™ Creator using the CAPSENSE™ tuner. For details on the Component and all related parameters, see the 

Component datasheet. 

5.3.3.5 Touchpad widget tuning 

Mutual-capacitance based touchpad widget supports up to three simultaneous finger touches. A slightly 
different Centroid algorithm compared to CSD touchpad is applied in a CSX touchpad widget. A 3x3 algorithm is 

used for calculating the X and Y position using Centroid algorithm as shown in Equation 45 and Equation 46 

respectively. 

Equation 45. Calculating X-position using centroid algorithm in CSX touchpad 

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑋 = (
𝑆𝑥+1 − 𝑆𝑥−1

𝑆3𝑥3
+ 𝑥) ∗

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑋

(𝑛𝑥 − 1)
 

Where, 

ResolutionX = Maximum X-axis position 

nx = Number of sensor elements in the X-direction 

x = Index of element which gives maximum signal 

𝑆𝑥+1 = Sum of three neighbor elements at the left from maximum (x) 

𝑆𝑥−1 = Sum of three neighbor elements at the right from maximum (x) 

𝑆3𝑥3  = Total sum of 3x3 difference array 

 

Equation 46. Calculating Y-position using centroid algorithm in CSX touchpad 

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑌 = (
𝑆𝑦+1 − 𝑆𝑦−1

𝑆3𝑥3
+ 𝑦) ∗

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑌

(𝑛𝑦 − 1)
 

Where, 

ResolutionY = Maximum Y-axis position 

ny = Number of sensor elements in the Y-direction 

y = Index of element which gives maximum signal 

𝑆𝑦+1 = Sum of three neighbor elements at the top from maximum (y) 

𝑆𝑦−1 = Sum of three neighbor elements at the bottom from maximum (y) 

 

 
 
 

 

https://github.com/Infineon/mtb-example-psoc4-capsense-csx-button-tuning
https://www.cypress.com/documentation/code-examples/ce228931-psoc-4-capsense-csx-tuning
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
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5.3.3.5.1 CSX finger detection criteria 

The touch in a CSX touchpad is reported to the host when the following Finger detection criteria is satisfied: 

1. Z_Peak > Finger threshold ± Hysteresis 

2. Z9_Sum condition 

• Z9_Sum > ((Finger threshold + Hysteresis) * Z9_Filt_Scale) (At panel core) 

• Z9_Sum > ((Finger threshold + Hysteresis) * Z9_Filt_Scale / 2) (At panel edge) 

• Z9_Sum > ((Finger threshold + Hysteresis) * Z9_Filt_Scale / 4) (At panel corner) 

3. Z8_sum condition 

• Z8_sum > Z_peak * Z8_Filt_Scale (At panel core) 

• Z8_sum > Z_peak * Z8_Filt_Scale / 2 (At panel edge) 

• Z8_sum > Z_peak * Z8_Filt_Scale / 4 (At panel corner) 

Where, 

Z_peak = Maximum signal obtained 

Z9_sum = Total sum of 3x3 difference array 

Z8_sum = Z9_Sum – Z_peak 

Z9_Filt_Scale = (0.8 * Z9_Sum)/Finger threshold 

Z8_Filt_Scale = (0.8 * Z8_Sum)/Finger threshold 

These values ensure that the detected object is of the correct proportions. 

• Z8_sum condition is checked to see if the relative mass of the finger is large enough to be recognized as a 

finger. This is done to discard very high noise in a segment, when the neighbouring sensors have no signal 
detected. 

• Z9_sum condition is checked to see if the absolute mass of the finger is large enough to be recognized as a 

finger. Similar to the Z8 condition, the Z9 condition may prevent noise-induced false touches. 
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Figure 80 3x3 matrix obtained in CAPSENSE™ tuner 

Figure 81 illustrates an overview of the CSX touchpad tuning procedure. 
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Figure 81 CSX touchpad widget tuning flowchart 

LTI measures the peak diff-count when a finger touch is centered between the four sensors. The LTI signal 
count is the average of the four peak sensors. This gives the least valid touch signal. 
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5.3.4 CSD-RM sensing method (fifth-generation) 

This section explains the basics of manual tuning using CSD-RM sensing method (Fifth-Generation). It also 
explains the hardware and software parameters that influence the CSD-RM sensing method and the procedure 

of manual tuning for button, slider, touchpad and proximity widgets. 

5.3.4.1 Basics 

5.3.4.1.1 Conversion gain and CAPSENSE™ signal 

Conversion gain will influence how much signal the system sees for a finger touch on the sensor. If there is 

more gain, the signal is higher, and a higher signal means a higher achievable Signal-to-noise ratio (SNR). 
Note that an increased gain may result in an increase in both signal and noise. However, if required, you can 

use firmware filters to decrease noise. For details on available firmware filters, see Table 7. 

Conversion gain in single CDAC 

In the single CDAC mode, the raw count is directly proportional to the sensor capacitance. 

Equation 47. Raw count relationship to sensor capacitance 

raw count =  GCSD CS 

Where,  

CS = Sensor capacitance 

CS = CP if there is no finger present on sensor 

CS = (CP + CF) when there is a finger present on the sensor 

GCSD = Capacitance to digital conversion gain of CAPSENSE™ CSD. The approximate value of this conversion gain 

according to Equation 18 and Equation 47 is shown using Equation 48. 

Equation 48. Capacitance to digital converter gain 

GCSD =  MaxCount
1

SnsClkDiv. Cref 
 

Where, Maxcount = NSub ∗ SnsClkDiv 

The equation for raw count in the single CDAC mode, according to Equation 48 and Equation 47 is shown in 
Equation 49. 

Equation 49. Single CDAC mode raw counts 

raw count = NSub

CS

Cref 
  

Where, 

NSub = Number of sub-conversions 

SnsClkDiv = sense clock divider 

CS = Sensor capacitance 

Cref = Reference capacitance 
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Cref = RefCDACCode ∗ Clsb 

RefCDACCode = Reference CDAC value 

𝐶𝑙𝑠𝑏 = 8.86𝑓𝐹 

The tunable parameters of the conversion gain are Cref, SnsClkDiv, and NSub. Figure 82 shows a plot of raw count 
versus sensor capacitance. 

 

raw count

CS

CP CP+CF

CF

Maxcount

CAPSENSE  Signal

0

Slope of the line = GCSD

 

Figure 82 Raw count versus sensor capacitance 

The change in raw counts when a finger is placed on the sensor is called CAPSENSE™ signal. Figure 83 shows 

how the value of the signal changes with respect to the conversion gain. 
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Figure 83 Signal values for different conversion gains 

Figure 83 shows three plots corresponding to three conversion gain values GCSD3, GCSD2, and GCSD1. An increase in 
the conversion gain results in higher signal value. However, this increase in the conversion gain also moves the 

raw count corresponding to CP (i.e., Baseline) towards the maximum value of raw count (Maxcount). For very 
high gain values, the raw count saturates as the plot of GCSD3 shows. Therefore, tune the conversion gain to get a 

good signal value while avoiding saturation of raw count. Tune the CSD-RM parameters such that when there is 
no finger on the sensor, i.e. when CS = CP, the raw count = 85% of Maxcount as Figure 84 shows. This ensures 
maximum gain, with enough margin for the raw count to grow because of environmental changes, and not 

saturate on finger touches.  
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Figure 84 Recommended tuning 

Conversion gain in dual CDAC mode 

The equation for raw count in the dual CDAC mode, according to Equation 19 and Equation 47 is shown in 

Equation 50. 

Equation 50. Dual CDAC mode raw counts 

raw count =  GCSD CS  − Maxcount ∗
2 ∗ Ccomp

CrefCompCLKdiv
 

Where,  

Maxcount = NSub * SnsClkDiv 

SnsClkDiv = Sense clock divider 

NSub = Number of sub-conversions 

Cref = Reference capacitance 

Ccomp = Compensation capacitance 

CompCLKDiv = CDAC compensation divider 

CS = Sensor capacitance 

Cref = RefCDACCode * Clsb 

Ccomp=CompCDACCode * Clsb 

RefCDACCode = Reference CDAC value 

CompCDACCode = Compensation CDAC value 

Clsb = 8.86fF 
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GCSD is given by Equation 48. 

In both single CDAC and dual CDAC mode, tune the CSD-RM parameters, so that when there is no finger on the 
sensor, i.e. when CS = CP, the raw count = 85% of Maxcount, as Figure 85 shows, to ensure high conversion gain, 
to avoid Flat-spots, and to avoid raw count saturation due to environmental changes. 

 

Figure 85 Recommended tuning in dual CDAC mode 

As Figure 85 shows, the 85% requirement restricts to a fixed gain in single-CDAC mode, while in dual-CDAC 
mode, gain can be increased by moving the CS axis intercept to the right (by increasing CompClkDIV) and 

correspondingly decreasing the modulator CDAC switching (SnsClkDIV) to still achieve raw count = 85% of 
Maxcount for CS = CP. Using dual CDAC mode this way brings the following changes to the Raw Count versus CP 

graph: 

a. Use of compensation CDAC introduces a non-zero intercept on the CS axis as shown in Equation 51. 

Equation 51. CS axis intercept with regards to Ccomp 

Cs axis intercept = (
 2 ∗ CcompSnsClkDiv

CompClkDiv
) 

b. The value of Cref in the dual CDAC mode is half compared to the value of Cref in the single CDAC mode (all 
other parameters remaining the same), so the gain GCSD in the dual CDAC mode is double the gain in the 

single CDAC mode according to Equation 25. Thus, the signal in the dual CDAC mode is double the signal in 
the single CDAC mode for a given number of sub-conversions (Nsub). 

While manually tuning a sensor, refer Equation 25, Equation 27 and the following points: 

1. Higher gain leads to increased sensitivity and better overall system performance. However, do not set the 
gain such that raw counts saturate, as the plot of gain GCSD3 shows in Figure 59. It is recommended to set the 

gain in such a way that the raw count corresponding to CP is 85 percent of the maximum raw count for both 

the single CDAC and dual CDAC mode. 

2. The sense clock frequency (FSW) should be set carefully; higher the frequency, higher the CS sampling rate 
which allows for more FSW periods and better noise averaging, but the frequency needs to be low enough to 
fully charge and discharge the sensor as Equation 31 indicates. 
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3. Enabling the compensation CDAC (baseline compensation) plays a huge role In increasing the gain; it will 
double the gain if set as recommended in Conversion gain in dual CDAC mode. Always enable 

Compensation CDAC, make sure the calibrated Cref is in valid range when enabling Compensation CDAC. 

4. Lower the reference CDAC, higher the gain. Adjust your CDAC to achieve the highest gain, but make sure that 
the raw counts corresponding to CP have enough margin for environmental changes such as temperature 

shifts, as indicated in Figure 60 and Figure 61. 

5. Increasing the number of sub-conversions used for scanning increases gain. An increase in number of sub-

conversions also increases the scan time according to Equation 8. A balance of scan time and gain need to 

be achieved using number of sub-conversions (Nsub).  

5.3.4.1.2 Flat-spots 

Ideally, raw counts should have a linear relationship with sensor capacitance as Figure 58 and Figure 61 show. 

However, in practice, RM converter has non-sensitivity zones, also called flat-spots or dead-zones – for a range 
of sensor capacitance values, the RM converter may produce the same raw count value as Figure 86 shows. 
This range is known as a dead-zone or a flat-spot.  

Equation 52 shows the flat-spots relation to different CAPSENSE™ hardware parameters. 

Equation 52. Flat-spots width 

Flatspots Width ∝
Cs

2

CMOD
.

FSW

FMOD. Bal%
 

Where,  

CS = Sensor capacitance 

CMOD = Modulator capacitor 

FSW = Frequency of the sense clock 

FMOD = Modulator clock frequency 

Bal% = Rawcount calibration percentage 
 

raw count
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2
N
-1
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Flat spots

 

Figure 86 Flat-spots in raw counts versus sensor capacitance when direct clock is used 
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Flat-spots reduction techniques 

1. Set rawcount calibration to 85%. 

As per Equation 52, flat-spots width is inversely proportional to calibration level. Setting calibration to 85% 
decrease the width of flat-spots significantly. 

2. Enable dithering. 

An additional Dither CDAC is available in Fifth-Generation CAPSENSE™ architecture, which adds white noise 

that moves the conversion point around the flat-spots region. 

3. Enable PRS clock. 

These flat-spots are prominent when direct clock is used as Sense clock source. Flat-spots are reduced if PRS is 
used as the sense clock source (see also section Using SmartSense to determine hardware parameters). PRS 

clock can results in a slight reduction of signal or sensitivity at higher rawcount calibration. Recommended to 

set the rawcount calibration to 65% when PRS is used as clock source.  

4. Use larger CMOD. 

The flat-spots width is inversely proportional to the CMOD used. Fifth-Generation architecture supports CMOD upto 

10 nF and typical value is 2.2 nF. And increasing CMOD have the adverse effect of increasing the noise, 

initialization time and minimum signal required to detect. 

5. Increase sense clock divider. 

Increasing sense clock divider decreases flat-spots width but increases the scan time. If the flat-spot is 
detected, increase the Sense clock divider such that the scan time requirement is met.  

Table 13 lists different the flat-spots reduction techniques in recommended priority and other considerations. 

 Flat-spots reduction techniques 

 

S. No Flat-spots reduction 

techniques 

Recommendation Additional benefits Disadvantage 

1 
Set rawcount calibration to 

85%. 
High Improves sensitivity  - 

2 Enable dithering High - - 

3 Enable PRS clock Low 
Improves EMI/EMC 
radiation and 

susceptibility 

Needs to set rawcount 

calibration to 65%.  

Decreases sensitivity. 

4 Increase CMOD Low - Increases noise 

5 Increase sense clock divider Low - Increases scan time 
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5.3.4.2 Selecting CAPSENSE™ hardware parameters 

CAPSENSE™ hardware parameters govern the conversion gain and CAPSENSE™ signal. Table 14 lists the 
CAPSENSE™ hardware parameters that apply to CSD-RM sensing method. The following subsections provide 

guidance on how to adjust these parameters to achieve optimal performance for CAPSENSE™ CSD-RM system. 

 CAPSENSE™ component hardware parameters 

Sections 5.3.4.2.1 and 5.3.4.2.2 show selecting the CAPSENSE™ parameters in Eclipse IDE for ModusToolbox™. 

For more details on configuring CAPSENSE™, see the Component datasheet / middleware document. 

5.3.4.2.1 Using SmartSense to determine hardware parameters 

Table 14 lists the CAPSENSE™ hardware parameters. Tuning these parameters manually for optimal value is a 
time-consuming task. You can use SmartSense to determine these hardware parameters and take it as an initial 

value for manual tuning. You can fine-tune these values to further optimize the scan time, SNR, power 
consumption, or improving EMI/EMC capability of the CAPSENSE™ system. Set the tuning mode to SmartSense 
and configure default values for parameters other than finger capacitance, Sense clock source and CDAC 
dither. Set these as per the application requirement. 

See the SmartSense section for the tuning procedure and use the Tuner GUI to read back all the hardware 

parameters set by SmartSense. See the CAPSENSE™ tuner guide for more details on how to use the Tuner GUI.  

Figure 87 shows the best hardware parameter values in the Tuner GUI that are tuned by SmartSense for a 

specific hardware to sense a minimum finger capacitance of 0.1 pF. 

S. No CAPSENSE™ parameter in ModusToolBox™ 

1 Scan mode 

2 Scan connection method 

3 Number of Init sub-conversions 

4 Sense clock divider 

5 Sense clock source 

6 Modulator clock divider 

7 Reference CDAC value 

8 CDAC compensation divider 

9 Compensation CDAC value 

10 Number of sub-conversions 

11 Enable CDAC dither 

https://www.cypress.com/ModusToolboxCapSenseTuner
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Figure 87 Read-back hardware parameter values in tuner GUI 

5.3.4.2.2 Manually tuning hardware parameters 

Scan mode 

Scan mode can be set as CS-DMA or Interrupt Driven mode. For autonomous scanning select DMA mode and for 
legacy interrupt based scanning select Interrupt Driven mode. 

Sensor connection method 

Autonomous scanning is only available in CTRLMUX method, but the numbers of supported pins are limited in 
this method (see the Device datasheet for supported pins). Additionally provides better immunity to on-chip 

IO noise. Choose AMUXBUS method to support more number of pins in Interrupt Driven mode. 

Modulator clock frequency 

The modulator clock governs the conversion time for capacitance-to-digital conversion, also called the “sensor 
scan time” (see Equation 8).  

A lower modulator clock frequency implies the following: 

• Longer conversion time (see Equation 55 and Equation 57). 

• Lower peak-to-peak noise on raw count because of longer integration time of the ratiometric converter. 

• Wider Flat-spots 

Select the highest frequency for the shortest conversion time and narrower flat-spots for most cases. Use 
slower modulator clock to reduce peak-to-peak noise in raw counts if required. 
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Based on the required Modulator clock frequency (FMOD), calculate the modulator clock divider using Equation 
53. 

Equation 53. Modulator clock divider 

Modulator clock divider =
FClock

FMOD
 

Where,  

FClock = Clock frequency connected to CAPSENSE™ block 

Initialization sub-conversions  

As part of initialization, CMOD1 and CMOD2 needs to be charged at required voltage (VDDA/2). There are three 

phases in initialization – CMOD initialization, CMOD short and initialization sub-conversions. During CMOD 

initialization phase CMOD1 is pulled to GND and CMOD2 is pulled to VDDA. During CMOD short phase both capacitors 
are tied together so the charge is shared to produce a voltage close to VDDA/2 on both. After the 2 phases the 

scanning is started but rawcount is discarded for number of init sub-conversions. 

Number of init sub-conversions should be selected based on Equation 54. 

Equation 54. Number of init sub-conversions 

Number of init subconversions =  𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (
CMOD ∗ VOS

VDDA ∗ CS ∗ (1 − Base%) ∗ (
1

Bal%
− 1)

) + 1 

or 

Number of init subconversions =  𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (
CMOD ∗ VOS

VDDA ∗ SnsClkDiv ∗ Cref ∗ (1 − Bal%)
) + 1 

Where,  

CMOD = Modulator capacitor 

VOS = Comparator offset voltage (3mV) 

CS = Sensor capacitance 

Base% = Baseline compensation percentage 

Bal% = Rawcount calibration percentage 

SnsClkDiv = sense clock divider 

Cref = Reference capacitance 

Cref = RefCDACCode * Clsb 

RefCDACCode = Reference CDAC value 

Clsb = 8.86fF 
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Sense clock parameters 

There are two parameters that are related to Sense clock: Sense clock source and Sense clock divider.  

Sense clock source 

Select “Auto” to let the Component automatically choose the best Sense clock source from Direct, PRSx, and 
SSCx for each widget. If not selecting Auto, select the clock source based on the following: 

• Use SSCx (spread spectrum clock) modes for reducing EMI/EMC noise at a particular frequency. This feature 

is available in PSoC™ 4S-Series, PSoC™ 4100S Plus, PSoC™ 4100PS, PSoC™ 4100S Max and PSoC™ 6 family of 
devices. In this case, the frequency of the sense clock is spread over a predetermined range. 

• Use Direct clock for absolute capacitance measurement.  

• Use PRSx (pseudo random sequence) modes to remove flat-spots and improve EMI/EMC radiation and 
susceptibility. In 5th Generation CAPSENSE™, PRS clock results in a slight reduction in  signal/sensitivity at 
higher rawcount calibration percent, hence 65% rawcount calibration is recommended when PRS clock is 
used. 

When selecting SSCx, you need to select the Sense clock frequency, Modulator clock frequency, and number of 
sub-conversion such that the conditions mentioned in ModusToolbox™ CAPSENSE™ configurator guide for 

SSCx clock source selection are satisfied. 

Sense clock divider 

The sense clock divider should be selected so that the sensor will charge and discharge completely in each 

sense clock period as Figure 46 shows. Note that for Fifth-Generation CSD-RM charging and discharging 
happens twice in a single clock period. 

This requires that the maximum sense clock frequency be chosen per Equation 55.   

Equation 55. Sense clock maximum frequency 

FS(maximum) =  
1

4 ∗ 5 ∗ RSeriesTotalCP
 

 

Equation 56. Total series resistance 

RSeriesTotal = REXT + Rinternal  

Where,  

Cp = Sensor parasitic capacitance 

RSeriesTotal = Total series-resistance, including the Rinternal resistance of the internal switches, the recommended 

external series resistance of 560  (connected on PCB trace connecting sensor pad to the device pin), and trace 

resistance if using highly resistive materials (example ITO or conductive ink). 

Rinternal = Internal resistance, this varies based on scan and shield modes, see table Table 15. 

 Internal resistance for sensor 

Scan mode Rinternal 

CTRLMUX 525 Ω 

AMUXBUS 425 Ω 

https://www.cypress.com/file/455231/download
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The value for CP can be estimated using the CSD Built-in-Self-test APIs. See the Component datasheet / 
middleware document for details. 

To minimize the scan time, as Equation 57 shows, it is recommended to use the maximum sense clock 
frequency (FSW) satisfies the criteria as per Equation 55. 

Equation 57. Sensor scan time 

TSCAN =
NSub

FSW
  

Where, 

NSub = Number of sub-conversions 

Based on required sense clock frequency (FSW), the sense clock divider be chosen per Equation 58. 

Equation 58. Sense clock divider 

Sense clock divider =
FMod

Fsw
 

Equation 48 shows that it is best to use the maximum clock frequency to have a good gain ; however, you 

should ensure that the sensor capacitor fully charges and discharges as shown in Figure 46. And keep in mind 
that higher clock frequency increases current consumption as there are more charging and discharging. 

Generally, the CP of the shield electrode will be higher compared to sensor CP. For good liquid tolerance, the 

shield signal should satisfy the condition mentioned in Tuning shield electrode section . If it is not satisfied, 
reduce the sense clock frequency further to satisfy the condition.  

Number of sub-conversions 

The number of sub-conversions decides the sensitivity of the sensor and sensor scan time. From Equation 19 
for a fixed modulator clock and Sense clock, increasing the number of sub-conversions (𝑁𝑆𝑢𝑏) increases the 

signal and SNR. However, increasing the number of sub-conversions also increases the scan time of the sensor 

per Equation 59. 

Equation 59. CSD-RM scan time 

Scan time =
NSub

FSW
 

Initially, set the value to a low number, and use the Tuner GUI to find the SNR of the sensor. If the SNR is not > 

5:1 with the selected NSub, try to increase the NSub in steps such that the SNR requirement is met. 

Capacitive DACs 

Fifth-Generation CAPSENSE™ supports two CDACs: Reference CDAC (Cref) and Compensation CDAC (Ccomp) that 

balance CMOD’s as Figure 44 shows. These govern the Conversion gain and CAPSENSE™ signal Conversion gain 
and CAPSENSE™ for capacitance-to-digital conversion. The CAPSENSE™ Component allows the following 

configurations of the CDACs: 

 Enabling or disabling of Compensation CDACs 

 Enabling or disabling of Auto-calibration for the CDACs 

 Compensation CDAC divider, DAC code selection for Reference and Compensation CDACs if auto-calibration 
is disabled 
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Reference CDAC (Cref) 

The reference CDAC is used to compensate the charge transfered by the sensor self-capacitance (CS) from CMOD. 

The number of times it is switched depends on the self-capacitance of sensor. In case of finger placed over the 
sensor, additional reference CDAC switching is required to compensate.  

Cref should satisfy below critieria: 

• For Compensation Disabled: 
RefCDACCode ≥ 25 

• For Compensation Enabled: 

RefCDACCode ≥  
20

CDAC Compensation Divider
 

Where, 

Cref = Reference capacitance = RefCDACCode * Clsb 

RefCDACCode = Reference CDAC value 

Clsb = 8.86fF 

Compensation CDAC (Ccomp) 

Enabling the compensation CDAC is called “dual CDAC” mode, and results in increased signal as explained in 

Conversion gain and CAPSENSE™ signal. Enable the compensation CDAC for most cases. 

The compensation capacitor is used to compensate excess self-capacitance from the sensor to increase the 
sensitivity. The number of times it is switched depends on the amount of charge the user application is trying to 
compensate (remove) from the sensor self-capacitance.  

Compensation CDAC divider 

The number of times the compensation capacitor is switched in a single sense clock is denoted by Kcomp. Select 

CDAC compensation divider based on Equation 60 such that below criteria is satisfied. 

1. CDAC compensation divider >= 4. 

2. Kcomp should be a whole number. 

Equation 60. CDAC compensation divider 

CDAC compensation divider =
Sense clock divider

Kcomp
 

Auto-calibration  

The auto-calibration feature enables the firmware to automatically calibrate the CDAC to achieve the required 
calibration target of 85%. It is recommended to enable auto-calibration for most cases. Enabling this feature 

will result in the following: 

 Fixed raw count calibration to 85% of maximum raw count even with part-to-part CP variation 

 Decrease the effect of Flat-spots 

If your design environment includes large temperature variation, you may find that the 85% CDAC calibration 
level is too high, and that the raw counts saturate easily over large changes in temperature, leading to lower 
SNR. In this case, adjust the calibration level lower by using Cy_CapSense_CalibrateAllSlots() in your firmware.  
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For proper functioning of CAPSENSE™ under diverse environmental conditions, it is recommended to avoid 
very low or high CDAC codes. For an 8-bit CDAC, it is recommended to use CDAC codes between 6-200 from the 

possible 0 to 255 range. You can use CAPSENSE™ tuner to confirm that the auto-calibrated CDAC values fall in 
this recommended range. If the CDAC values are out of the recommended range, based on Equation 47, 

Equation 48, and Equation 50, you may change the Calibration level or Fmod or FSW to get the CDAC code in 
proper range.  

Disable CDAC auto-calibration if a change in CP needs to be detected by measuring the raw count level at reset. 
For example: 

 Detecting large variations in sensor CP across boards or due to layout problems 

 Detecting finger touch at reset 

 Advanced CAPSENSE™ methods like liquid-level sensing, for example, to have different raw count level for 
different liquid levels at reset 

Selecting CDAC codes 

This is not the recommended approach. However, this approach could be used only if you want to disable auto-

calibration for any reason. To get the CDAC code, you may first configure CAPSENSE™ Component with auto-
calibration enabled and all other hardware parameters the same as required for final tuning and read back the 

calibrated CDAC values using Tuner GUI. Then, re-configure the CAPSENSE™ Component to disable auto-
calibration and use the obtained CDAC codes as fixed DAC codes read-back from the Tuner GUI.  

CDAC dither 

As the input capacitance is swept, the raw count should increase linearly with capacitance. There are regions 

where the raw count does not change linearly with input capacitance these are called flat-spots, see section 
Flat-spots for more details. Dithering helps to reduce flat-spots using a dither CDAC. The dither CDAC adds 

white noise that moves the conversion point around the flat region.  

5.3.4.2.3 Tuning shield electrode 

The shield related parameters need to be additionally configured or tuned differently when you enable the 
Shield electrode in the CSD-RM sensing method for liquid tolerance or reducing the Cp of the sensor. 

Shield electrode tuning theory 

Ideally, the shield waveform should be exactly the same as that of the sensor as explained in CAPSENSE™ CSD-

RM shielding. However, in practical applications, the shield waveform may have a higher settling time. Observe 
the sensor and shield waveform in the oscilloscope; an example waveform is shown in Figure 88 and Figure 89. 

The shield waveform should settle to the sensor voltage within 90% of ON time of the sense clock waveform 
and the overshoot error of the shield signal with respect to VREF should be less than 10%. 

If these conditions are not satisfied, you will observe a change in raw count of the sensors when touching the 

shield hatch; in addition, if inactive sensors are connected to shield as mentioned in Inactive sensor 
connection, touching one sensor can cause change in raw count on other sensors, which indicates that there is 
cross talk if the shield electrode is not tuned properly. 

Approximate maximum shield frequency (FShield) which ensures correct charging and discharging of shield 
waveform can be calculated using Equation 61. 
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Equation 61. Sense clock maximum frequency 

FShield(maximum) =  
1

4 ∗ 5 ∗ RSeriesTotalCsh
 

Where, 

Csh = Shield Cp 

RSeriesTotal = Rinternal + REXT 

REXT = External series resistor connected to shield electrode. Recommended value is 560 Ω. 

Rinternal = Internal resistance, this varies based on scan and shield modes, see table Table 16. 

 Internal resistance for shield sensor 

In SmartSense, the sense clock frequency is automatically set. Check if these conditions are satisfied. If not 

satisfied, switch to Manual tuning and set the sense clock frequency manually so that these conditions are 
satisfied. 

Signal probed at sensor

Signal Probed at shield electrode

Actual settling time

90% of ON time

 

Figure 88 Properly tuned shield waveform (active shielding) 

 

Scan Mode Rinternal (Active Shield) Rinternal (Passive Shield) 

CTRLMUX 250 Ω 250 Ω 

AMUXBUS 300 Ω 100 Ω 
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Signal probed at sensor

Signal Probed at shield electrode

Actual settling time

90% of ON time

 

Figure 89 Properly tuned shield waveform (passive shielding) 

Tuning shield-related parameters 

Inactive sensor connection 

When the shield electrode is enabled for liquid-tolerant designs, or if you want to use shield to reduce the 

sensor parasitic capacitance, this option should be specified as “Shield”; otherwise, select “Ground”.  

However, there is a risk of higher radiated emission due to inactive sensors getting connected to Shield. In such 

situations, use the CAPSENSE™ API to manually control inactive sensor connections. Instead of connecting all 
unused sensors to the shield, connect only the opposing inactive sensors or inactive sensors closer to the 

sensor being scanned to shield for reducing the radiated emission.  

Number of shield electrodes (total shield count) 

This parameter specifies the number of shield electrodes required in the design. Most designs work with one 
dedicated shield electrode; however, some designs require multiple dedicated shield electrodes for ease of 
PCB layout routing or to minimize the PCB real estate used for the shield layer. See Layout guidelines for 

shield electrodeLayout guidelines for shield .  

Shield mode 

The Fifth-Generation CAPSENSE™ architecture supports two shield modes – active and passive shielding. See 

CAPSENSE™ CSD-RM shielding section to decide which mode is best suited for your application. 

5.3.4.3 Selecting CAPSENSE™ software parameters 

CAPSENSE™ software parameters in Fifth-Generation are the same as that for Fourth-Generation; therefore, 
these parameters could be selected as mentioned in Selecting CAPSENSE™ software parameters section.  
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5.3.4.4 Configuring autonomous scan 

Autonomous scanning improves CPU offloading by removing the requirement of CPU intervention in between 
sensor scans. Figure 90 shows the waveform of scanning all slots, which shows the CAPSENSE™ CPU bandwith 

requirement for autonomous scanning and interrupt driven scanning. In autonomous scan once the CPU 
initiates a scan all slot command, there is no CPU interrupt is raised by CAPSENSE™ until all the slot scan is 
completed. But in interrupt driven scan, after each slot scan, a CPU interrupt is raised to configure the next slot 
sensors.  
 

Scanning All Slots

Initiate Scan All 
Slots

Process All Slots
CAPSENSE  ISR after each slot 

scan is completed

Scanning All Slots

Initiate Scan All 
Slots

Process All Slots

CPU BW free

CPU BW with CAPSENSE 

Autonomous Scanning

Interrupt driven Scanning

 

Figure 90 CAPSENSE™ configurator settings for scan mode 

 



  

 

 

Application Note 121 of 229 001-85951 Rev. AA  

   2021-10-01 

 

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide 
  

CAPSENSE™ performance tuning 

  

Autonomous scanning is only available when Scan mode is set as Chained Scanning – DMA (CS-DMA) in the 
CAPSENSE™ configurator as shown in Figure 91. And sensor connection method is only available as CTRLMUX. 

This limits the number of available CAPSENSE™ sensors. In Interrupt driven mode, sensor connection can be 
configured as either AMUXBUS or CTRLMUX. Through AMUXBUS any GPIO pin can be configured as a 

CAPSENSE™ sensor, but CPU interrupts need to be serviced to configure every next sensor and read the scan 
result. 
 

 

Figure 91 CAPSENSE™ configurator settings for scan mode 

5.3.4.4.1 Chained scanning – DMA 

In the chained scanning - DMA mode, DMA handles the configuration of each sensor, thereby avoiding the 
requirement of CPU intervention after each sensor scan completion. Each channel of MSC block requires four 

channels of DMA to be configured in the device configurator as shown in Figure 92. 
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Figure 92 DMA configuration for MSC channels 

Figure 93 illustrates the flow of CS-DMA based scanning mode. 

1. Write DMA channel 

Write DMA is configured to transfer scan configuration of a sensor to MSC block. Source address to the 
corresponding sensor’s scan configuration is received from Chain Write DMA channel. 

2. Chain Write DMA channel 

When the MSC block completes scanning of current sensor, it will trigger the DMA to transfer the source address 
of next sensor’s or first sensor’s (if it is a new scan) scan configuration to the Write DMA channel. 

3. Read DMA channel 

Read DMA channel transfer the scan result (rawcount) to destination location of corresponding sensor. 

4. Chain Read DMA channel 

Once the current sensor scan is completed by MSC block, Chain Read DMA is triggered to transfer the 
destination location (address) of current sensor scan result (rawcount) to the Read DMA channel.  



  

 

 

Application Note 123 of 229 001-85951 Rev. AA  

   2021-10-01 

 

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide 
  

CAPSENSE™ performance tuning 
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Scan Config - 1
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Data X

Data Y

Data Z

Data X
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Write Trigger Out

Write Trigger In
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Scan Config Reg
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Figure 93 CS-DMA scanning flow 

5.3.4.5 Multi-channel scanning 

Multi-channel design uses both the instances of CAPSENSE™ MSC0 and MSC1, leading to simultaneous 

operation and reduction in scan time. Multi-channel scanning is in lock step thereby avoiding any cross-
channel noise coupling. Scan synchronization is required to have the scanning in lock step. Fifth-Generation 

CAPSENSE™ technology has built in ability for multi-channel synchronization and CPU is not required for this. 

Multi-channel operation is an added advantage to support applications such as large touchpad, which require 

many sensor pins for interfacing. For example, a 6x8 touchpad can be configured as shown in Figure 94. In this 
figure, the sensors shown in blue color is scanned by channel 0 (MSC0) and green color is scanned by channel 1 
(MSC1). 
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Figure 94 Scanning 6x8 CSD touchpad using multi-channel 

In this case, channel 0 and channel 1 can scan one of its sensors at the same time. To avoid any cross-talk noise, 
sensors to be scanned together should be selected such that the physical distance between the two sensor is as 

maximum as possible, and should avoid combining row and column sensors. 

In the above example, the recommended scan configuration is as shown in Table 17. All the sensors that 
belong to same slot is scanned together. 

 Channel scan configuration 

5.3.4.6 Button widget tuning 

Button widget tuning section  provides high-level steps for tuning CSD button. The CE231078 PSoC™ 4: MSC 

CAPSENSE™ CSD Button Tuning explains tuning of self capacitance-based button widgets in the Eclipse IDE 
for ModusToolbox™. For details on the Component and all related parameters, see the Component datasheet. 

Slot # Channel 0 sensor Channel 1 sensor 

Slot 0 Col 0 Col 4s 

Slot 1 Col 1 Col 5 

Slot 2 Col 2 Col 6 

Slot 3 Col 3 Col 7 

Slot 4 Row 0 Row 3 

Slot 5 Row 1 Row 4 

Slot 6 Row 2 Row 5 

https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csd-button-tuning
https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csd-button-tuning
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
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5.3.4.7 Slider widget tuning 

Slider widget tuning section provides high-level steps for tuning CSD slider. The CE232776 PSoC™ 4: MSC 
CAPSENSE™ CSD slider tuning explains tuning of self-capacitance-based slider widgets in the Eclipse IDE for 

ModusToolbox™. For details on the Component and all related parameters, see the Component datasheet. 

5.3.4.8 Touchpad widget tuning 

Touchpad widget tuning section provides high-level steps for tuning CSD-RM touchpad. The CE232273 PSoC™ 
4: MSC Self-capacitance touchpad tuning explains tuning of self-capacitance-based touchpad widgets in the 

Eclipse IDE for ModusToolbox™. For details on the Component and all related parameters, see the Component 

datasheet. 

Following are the basic rules for Scan Order tab for using CSD-RM Touchpad Widget on multi-channels: 

1. Scanning in Fifth-Generation CAPSENSE™ is ordered using slot numbers. A single slot number can be 

assigned to one sensor in all the channels and scanning that particular slot, scans all the sensors in that slot 
in sync. 

2. For CSD-RM Touchpad same slot should only be assigned to the row or to the column. Thus, avoiding 

scanning of a row and column element together which will cause cross-talk.  

3. Slot numbers should be assigned in such a way that there is a maximum distance between the sensors 
which is having same slot number.  

4. Should not mix CSD and CSX sensors in a single slot. 

5. Touchpad sensors should be equally divided between channels for optimizing scan duration. 

6. All channels must have equal number of sensors (scans) for "consensus" method to work. If number of 
sensor in each channel is not equal, "empty slots" are added to respective channels. 

7. With in a slot all sensors should have the same sense clock and same number of sub-conversions 

Figure 95 shows an example of slot configuration for an 8x6 CSD-RM touchpad. 
 

 

Figure 95 Slot configuration for an 8x6 CSD-RM touchpad 

5.3.4.9 Proximity widget example 

For tuning a proximity sensor, see AN92239 - Proximity sensing with CAPSENSE™. 

https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csd-slider-tuning
https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csd-slider-tuning
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csd-touchpad-tuning
https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csd-touchpad-tuning
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
http://www.cypress.com/documentation/application-notes/an92239-proximity-sensing-capsense
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5.3.5 CSX-RM sensing method (Fifth-generation) 

This section explains the basics of manual tuning using CSX-RM sensing method for the Fifth-Generation 
devices. It also explains the hardware parameters that influence the manual tuning procedure.  

5.3.5.1 Basics 

5.3.5.1.1 Conversion gain and CAPSENSE™ signal 

Conversion gain will influence how much signal count the system observes for a finger touch on the sensor. If 
there is more gain, the signal is higher, and a higher signal means a higher achievable Signal-to-noise ratio 

(SNR). Note that an increased gain may result in an increase in both signal and noise. However, if required, you 
can use firmware filters to decrease noise. For details on available firmware filters, see Table 7. 

Conversion gain in single CDAC 

In a mutual-capacitance sensing system, the rawcount counter is directly proportional to the mutual-
capacitance between the Tx and Rx electrodes, as Equation 62 shows. 

Equation 62. Raw count relationship to sensor capacitance 

RawcountCounter  =  GCSX CM 

Where,  

GCSX = Capacitance to digital conversion gain of CAPSENSE™ CSX 

CM = Mutual-capacitance between the Tx and Rx electrodes 

Figure 97 shows the relationship between raw count and mutual-capacitance of the CSX sensor. The tunable 

parameters of the conversion gain in Equation 63 are Cref, TxClkDiv and NSub.  

The approximate value of this conversion gain is: 

Equation 63. Capacitance to digital converter gain 

GCSX =  MaxCount.
2

CrefTxClkDiv
 

Where, MaxCount = NSub * TxClkDiv 

The equation for raw count in the single CDAC mode, according to Equation 62 and Equation 63 is shown in 
Equation 64. 

Equation 64. Single CDAC mode raw counts 

RawcountCounter  = NSub

2 ∗ CM

Cref 
  

Where, 

NSub = Number of sub-conversions 

TxClkDiv = Tx clock divider 

CM = Sensor mutual-capacitance 

Cref = RefCDACCode ∗  Clsb 
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RefCDACCode  = Reference CDAC value 

Clsb = 8.86 fF 

The tunable parameters of the conversion gain are Cref, TxClkDiv, and NSub. 
 

V

t

VOFF

0

T = 1/FTX

VON

 

Figure 96 Voltage at Tx node of the CSX sensor 

Note that the raw count observed from the Component is given by Equation 65. See CAPSENSE™ CSX-RM 

sensing method (fifth-generation) for more details on Rawcountcomponent. 

Equation 65. Rawcountcomponent 

RawcountComponent = MaxCount − RawcountCounter 
 

 

Figure 97 Raw count vs sensor mutual-capacitance 
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Conversion gain in dual CDAC mode 

The equation for raw count in the dual CDAC mode, according to Equation 23 and Equation 62 is shown in 
Equation 66. 

Equation 66. Dual CDAC mode raw counts 

raw count =  GCSX CM  − Maxcount
2 ∗ Ccomp

CrefCompCLKdiv
 

Where,  

Maxcount = NSub * SnsClkDiv 

SnsClkDiv = Sense clock divider 

NSub = Number of sub-conversions 

Cref = Reference capacitance = RefCDACCode*Clsb 

Ccomp = Compensation capacitance = CompCDACCode*Clsb 

CompCLKDiv = CDAC compensation divider 

CM = Sensor mutual-capacitance 

RefCDACCode = Reference CDAC value 

CompCDACCode = Compensation CDAC value 

Clsb = 8.86fF 

GCSX is given by Equation 63. 

5.3.5.2 Selecting CAPSENSE™ hardware parameters 

CAPSENSE™ hardware parameters govern the conversion gain and CAPSENSE™ signal. Table 18 lists the 

CAPSENSE™ hardware parameters that apply to the CSX-RM sensing method for the Fifth-Generation devices. 

 CAPSENSE™ component hardware parameters 

S. No CAPSENSE™ parameter in ModusToolBox™ 

1 Tx clock divider 

2 Tx clock source 

3 Modulator clock divider 

4 Reference CDAC value 

5 CDAC compensation divider 

6 Compensation CDAC value 

7 Number of sub-conversions 

8 Enable CDAC dither 
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5.3.5.2.1 Scan mode 

Scan mode can be set as CS-DMA or Interrupt Driven mode. For autonomous scanning select DMA mode and for 
legacy interrupt based scanning select Interrupt Driven mode. 

5.3.5.2.2 Sensor connection method 

Autonomous scanning is only available in CTRLMUX method, but the numbers of supported pins are limited in 
this method (see the Device datasheet for supported pins). Additionally provides better immunity to on-chip 
IO noise. Choose AMUXBUS method to support more number of pins in Interrupt Driven mode. 

In CTRLMUX connection method for CSX sensors, choose Inactive sensor connection as VDDA/2 and ensure to 
add empty scan slots before the first sensor scan for initializing the voltages on Rx lines to VDDA/2. See 

Touchpad widget tuning code examples for detailed steps on creating empty slots. 

5.3.5.2.3 Modulator clock frequency 

It is best to choose the highest allowed clock frequency for the given device because a higher modulator clock 
frequency leads to a higher sensitivity/signal, increased accuracy, and lower noise for a given CM to digital count 

conversion as Equation 62 and Equation 63 indicates. Also, a higher value of FMOD/FTX ensures lower width of 
Flat-spots in CM to raw count conversion. 

5.3.5.2.4 Initialization sub-conversions  

As part of initialization, CMOD’s needs to be charged at required voltage (VDDA/2). There are three phases in 
initialization – CMOD initialization, CMOD short and initialization sub-conversions. During CMOD initialization phase 

CMOD1 is pulled to GND and CMOD2 is pulled to VDDA. During CMOD short phase both capacitors are tied together so 

the charge is shared to produce a voltage close to VDDA/2 on both. After the 2 phases the scanning is started 
but rawcount is discarded for number of init sub-conversions. 

Number of init sub-conversions should be selected based on Equation 67. 

Equation 67. Number of init sub-conversions 

Number of init subconversions =  𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (
CMOD ∗ VOS

2 ∗ VDDA ∗ CM ∗ (1 − Base%) ∗ (
1

Bal%
− 1)

) + 1 

or 

Number of init subconversions =  𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (
CMOD ∗ VOS

VDDA ∗ TxClkDiv ∗ Cref ∗ (1 − Bal%)
) + 1 

Where,  

CMOD = Modulator capacitor 

VOS = Comparator offset voltage (3mV of PSoC 4100S Max device) 

CM = Sensor mutual-capacitance 

Base% = Baseline compensation percentage 

Bal% = Rawcount calibration percentage 

TxClkDiv = Tx clock divider 
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Cref = Reference capacitance = RefCDACCode * Clsb 

RefCDACCode = Reference CDAC value 

Clsb = 8.86fF 

5.3.5.2.5 Tx clock parameters 

There are two parameters that arhe related to the Tx clock: Sense clock source and Sense clock frequency.  

Tx clock source 

Select “Auto” as the clock source for the Component to automatically select the best Tx clock source between 

Direct and Spread Spectrum Clock (SSCx) for each widget. If “Auto” option is not selected, then choose the 

clock source based on the following: 

• Direct – Clock signal with a fixed clock frequency. Use this option for most cases. 

• Spread spectrum clock (SSCx) – If you choose this option, the Tx clock signal frequency is dynamically 

spread over a predetermined range. Use this option for reduced EMI interference and avoiding Flat-spots.  

However, when selecting SSCx clock, ensure to select the Tx clock frequency, modulator clock frequency, 

and number of sub-conversion such that the conditions mentioned in Component datasheet / 
ModusToolbox™ CAPSENSE™ configurator guide for SSCx clock source selection are satisfied. 

• Pseudo Random Sequence (PRSx) – Use PRSx (pseudo random sequence) modes to remove flat-spots and 

improve EMI/EMC radiation and susceptibility. In 5th Generation CAPSENSE™, PRS clock introduces 
signal/sensitivity loss at higher rawcount calibration percent, hence 65% rawcount calibration is 

recommended when PRS clock is used. 

Tx clock frequency 

The Tx clock frequency determines the duration of each sub-conversion as explained in the CAPSENSE™ CSX-
RM sensing method (fifth-generation) section. The Tx clock signal must completely charge and discharge the 
sensor parasitic capacitance; and can be verified by checking the signal in an oscilloscope or it can be set using 

Equation 62. In addition, ensure that the auto-calibrated CDAC code lies in the mid-range (for example, 6-200) 

for the selected FTX. If the auto-calibrated CDAC code lies out of the recommended range, tune FTX such that it 

falls in the recommended range and satisfies Equation 68. 

Equation 68. Condition for selecting Tx clock frequency 

FTX <
1

2 ∗ 5 ∗ RSeriesTxCPTx
 

Where,  

CpTx = Tx electrode parasitic capacitance 

RSeriesTx = Total series-resistance, including the Rinternal resistance of the internal switches, the recommended 

external series resistance of 2K (connected on PCB trace connecting sensor pad to the device pin), and trace 
resistance if using highly resistive materials (example ITO or conductive ink). 

Rinternal = Internal resistance, this varies based on scan modes, see Table 19. 

 

 

http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
https://www.cypress.com/file/455231/download
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 Internal resistance for sensor 

The value for CP can be estimated using the CSD Built-in-Self-test APIs. See the Component datasheet / 
middleware document for details. 

To minimize the scan time, as Equation 69 shows, it is recommended to use the maximum Tx clock frequency 
available in the component drop-down list that satisfies Equation 68.  

Equation 69. Scan time of CSX sensor 

TCSX =
NSub

FTX
 

Where,  

NSub = Number of sub-conversions  

Additionally, if you are using the SSCx clock source, ensure that you select the Tx clock frequency that meets 

the conditions mentioned in Component datasheet / middleware document / ModusToolbox™ CAPSENSE™ 

configurator guide in addition to these conditions.  

5.3.5.2.6 Number of sub-conversions 

The number of sub-conversions decides the sensitivity of the sensor and sensor scan time. From Equation 23 

for a fixed modulator clock and Tx clock, increasing the number of sub-conversions (NSub) increases the signal 

and SNR. However, increasing the number of sub-conversions also increases the scan time of the sensor per 

Equation 69. 

Initially, set the value to a low number (for example, 20), and use the Tuner GUI to find the SNR of the sensor. If 
the SNR is not > 5:1 with the selected NSub, increase then NSub in steps such that the SNR requirement is met. 

5.3.5.2.7 Capacitive DACs 

CSX-RM in Fifth-Generation supports two CDACs: Reference CDAC (Cref) and Compensation CDAC (Ccomp) that 
balance CMOD’s as Figure 49 shows. These govern the Conversion gain and CAPSENSE™ signal for capacitance-

to-digital conversion. The CAPSENSE™ Component allows the following configurations of the CDACs: 

 Enabling or disabling of Compensation CDACs 

 Enabling or disabling of Auto-calibration for the CDACs 

 Compensation CDAC divider, DAC code selection for Reference and Compensation CDACs if auto-calibration 

is disabled 

Reference CDAC (Cref)  

The reference CDAC is used to compensate the charge transfered by the sensor mutual-capacitance (CM) from 

CMOD. The number of times it is switched depends on the mutual-capacitance of sensor.  
Cref should satisfy below critieria: 

• For Compensation Disabled: 
RefCDACCode ≥ 6 

• For Compensation Enabled: 

Scan mode Rinternal 

CTRLMUX 950 Ω 

AMUXBUS 500 Ω 

https://www.cypress.com/file/455231/download
https://www.cypress.com/file/455231/download
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RefCDACCode ≥  
10

CDAC Compensation Divider
 

Where, 

Cref = Reference capacitance = RefCDACCode * Clsb 

RefCDACCode = Reference CDAC value 

Clsb = 8.86fF 

Compensation CDAC (Ccomp) 

Enabling the compensation CDAC is called “dual CDAC” mode, and results in increased signal as explained in 

Conversion gain and CAPSENSE™ signal. Enable the compensation CDAC for most cases. 

The compensation capacitor is used to compensate excess mutual-capacitance from the sensor to increase the 
sensitivity. The number of times it is switched depends on the amount of charge the user application is trying to 

compensate from the sensor mutual-capacitance.  

Ccomp should satisfy below critieria: 

• If RefCDACCode = 1, then CompCDACCode ≥ 98 
Where, 

Ccomp = Compensation capacitance = CompCDACCode * Clsb 

CompCDACCode = Compensation CDAC value 

Clsb = 8.86fF 

5.3.5.2.8 Compensation CDAC divider 

The number of times the compensation capacitor is switched in a single sense clock is denoted by Kcomp. Select 
CDAC compensation divider based on below Equation 70 such that below criteria is satisfied: 

8. CDAC compensation divider >= 4. 

9. Kcomp should be a whole number. 

Equation 70. CDAC compensation divider 

CDAC compensation divider =
Tx clock divider

Kcomp
 

5.3.5.2.9 Auto-calibration  

This feature enables the firmware to automatically calibrate the CDAC to achieve the required calibration target 
of 40%. It is recommended to enable auto-calibration for most cases. Enabling this feature will result in the 

following: 

 Fixed raw count calibration to 40% of max raw count even with part-to-part CM variation 

 Decrease the effect of Flat-spots 

 Automatically selects the optimum gain 
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For proper functioning of CAPSENSE™ under diverse environmental conditions, it is recommended to avoid 
very low or high CDAC codes. You can use CAPSENSE™ tuner to confirm that the auto-calibrated CDAC values 

fall in this recommended range. If the CDAC values are out of the recommended range, based on Equation 62, 
Equation 63, and Equation 65, you may change the Calibration level or Fmod or FSW to get the CDAC code in 

proper range.  

5.3.5.2.10 Selecting CDAC codes 

This is not the recommended approach. However, this could be used only if you want to disable auto-

calibration for any reason. To get the CDAC code, you may first configure CAPSENSE™ Component with auto-

calibration enabled and all other hardware parameters the same as required for final tuning and read back the 
calibrated CDAC values using Tuner GUI. Then, re-configure the CAPSENSE™ Component to disable auto-
calibration and use the obtained CDAC codes as fixed DAC codes read-back from the Tuner GUI.  

5.3.5.2.11 CDAC dither 

As the input capacitance is swept the raw count should increase linearly with capacitance. There are regions 
where the raw count does not change linearly with input capacitance these are called flat-spots, see section 

Flat-spots for more details. Dithering helps to reduce flat-spots using a dither CDAC. The dither CDAC adds 
white noise that moves the conversion point around the flat region.  

5.3.5.3 Selecting CAPSENSE™ software parameters 

CAPSENSE™ software parameters in Fifth-Generation are the same as that for Fourth-Generation; therefore, 
these parameters could be selected as mentioned in the Selecting CAPSENSE™ software parameters section.  

5.3.5.4 Configuring autonomous scan 

Configuring autonomous scan in CSX-RM sensing is the same as that for CSD-RM sensing; therefore, configurate 
autonomous scan as mentioned in the Configuring autonomous scan section. 

5.3.5.5 Multi-channel scanning 

Multi-channel scanning in CSX-RM sensing is the same as that for CSD-RM sensing; therefore, refer Multi-
channel scanning section 5.3.4.5 for more details. 

5.3.5.6 Button widget tuning 

Button widget tuning section provides high-level steps for tuning CSX button. The CE231079 PSoC™ 4: MSC 

CAPSENSE™ CSX button tuning explains tuning of mutual-capacitance based button widgets in the Eclipse IDE 

for ModusToolbox™. For details on the Component and all related parameters, see the Component datasheet. 

5.3.5.7 Touchpad widget tuning 

Touchpad widget tuning section provides high-level steps for tuning the CSX Touchpad. The CE232275 
PSoC™ 4: MSC multi-touch mutual-CAPSENSE™ touchpad tuning explains tuning of mutual-capacitance 
based button widgets in the Eclipse IDE for ModusToolbox™. For details on the Component and all related 
parameters, see the Component datasheet. 

https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csx-button-tuning
https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csx-button-tuning
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csx-touchpad-tuning
https://github.com/Infineon/mtb-example-psoc4-msc-capsense-csx-touchpad-tuning
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
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Rules for Scan Order tab for CSX widget when multi-channels are enabled: 

1. Scanning in Fifth-Generation  CAPSENSE™ is ordered using slot numbers. A single slot number can be 
assigned to one sensor in all the channels and scanning that particular slot, scans all the sensors in that slot 
in sync. 

5. Slot numbers should be assigned in such a way that there is a maximum distance between the Rx electrode 
which is having same slot number, thus avoiding any potential cross-talk. 

6. Tx and Rx electrode of a sensor can be assigned to two different channels or same channel. The sensor 
belongs to the channel which sensor Rx electrode is connected.  

7. Rx electrodes should be equally divided between channels for optimizing scan duration. 

8. Any of the channel can generate Tx signal for all channels.  

9. Tx electrodes can be assigned in any order between channels. 

10. All channels must have equal number of sensors (scans) for “consensus” method to work. If number of 

scans in each channel is not equal, "empty slots" are added to respective channels.  

11. Should not mix CSD and CSX sensors in a single slot. 

2. With in a slot all sensors should have the same sense clock and same number of sub-conversions 

Figure 98 shows an example of slot configuration for an 86 CSX-RM touchpad. 
 

 

Figure 98 Slot configuration for 86 CSX-RM touchpad 
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5.3.6 Manual tuning trade-offs 

When manually tuning a design, it is important to understand how the settings impact the characteristics of the 
capacitive sensing system. Any CAPSENSE™ design has three major performance characteristics: reliability, 

power consumption, and response time.  

• Reliability defines how CAPSENSE™ systems behave in adverse conditions such as a noisy environment or 

in the presence of water. High-reliability designs will avoid triggering false touches, and ensure that all 
intended touches are registered in these adverse conditions. 

Power consumption is defined as the average power drawn by the device, which includes, scanning, 
processing, and low-power mode transitions as explained in Low-power design. Quicker scanning and 

processing of the sensors ensures that the device spends less time in a higher power state and maximizes the 

time it can spend in a lower power sleep state. 

• Response time defines how much time it takes from the moment a finger touches the sensor until there is a 

response from the system. Because the lowest response time is limited by the scan and processing time of 
the sensors, it is important to properly define and follow a timing budget. A good target for total response 

time is below 100 ms. 

These performance characteristics depend on each other. The purpose of the tuning process is to find an 

optimal ratio that satisfies the project’s specific requirements. When planning a design, it is important to note 
that these characteristics usually have an inverse relationship. If you take action to improve one characteristic, 
the others will degrade. 

For example, if you want to use CAPSENSE™ in a toy, it is more important to have a quick response time and low 

power consumption. In a different example, such as a “Start/Stop” button for an oven, reliability is the most 

important characteristic and the response time and power consumption are secondary. 

Now let us consider the factors that affect reliability, power consumption, and response time. Figure 99 shows 

dependencies between CAPSENSE™ characteristics, measurable parameters, and actual CAPSENSE™ 

configurable parameters. 
 

Reliability Power Consumption Response Time

SNR

Scan Time

Scan Rate

Scan Resolution

Modulator
Clock Frequency

Sense 
Clock Frequency

Firmware Filters

Debounce

Compensation
IDAC

Shield

Sense Clock Source
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Measurable Parameters
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Firmware 
Processing Time

Modulator IDAC

 

Figure 99 CAPSENSE™ parameter relationships 
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5.3.6.1 Reliability 

The following factors affect reliability: 

1. Signal-to-noise ratio (SNR): 

SNR gives a measure of confidence in a valid touch signal. For reliable CAPSENSE™ operation, it should be 

greater than 5. Manual tuning can ensure optimal SNR in specific designs. 

2. Noise immunity: 

It is the ability of the system to resist external or internal noise. Typical examples of external noise are ESD 
events, RF transmitters such as Bluetooth® LE, switching relays, power supply, and so on. The internal noise 
source could be an LED driven by PWM, or I2C, or SPI communications for example. Even designs with good 

SNR may suffer from poor performance because of poor noise immunity. Manual tuning allows to tune 
frequencies and parameters to help avoid noise interference by allowing more control over selection of 
different parameters. 

5.3.6.2 Power consumption and response time 

The following factors affect the power consumption and response time: 

1. Scan rate 

Scan rate can be defined as the frequency at which you scan the sensor. Scan rate decides the minimal 
possible time from the finger touch until it is reported. The maximum scan rate will be limited by the 
Sensor scan . 

2. Scan time 

It is the time taken to scan and process a particular sensor. It affects power consumption as indicated in 
Low-power design and scan rate as indicated above. Manual tuning can achieve specific scan durations 

while maintaining a minimum SNR. 

3. Firmware touch delay 

This can be caused by the Debounce procedure or use of Raw Data Noise Filters depending on the 
CAPSENSE™ component version you are using). Both affect scan time by adding to the processing time of a 

sensor and delay the touch reporting until a certain number of samples in a row show the touch signal.  

In both cases response rate is reduced, but reliability is usually improved. 
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5.3.7 Tuning debug FAQs 

This section lists the general debugging questions on CAPSENSE™ Component tuning. Jump to the question 
you have, for quick information on possible causes and solutions for your debugging topic. 

5.3.7.1 The tuner does not communicate with the device 

Cause 1: Your device is not programmed. 

Solution 1: Make sure to program your device with your latest project updates before launching the tuner. 

Cause 2: The tuner configuration setting does not match the SCB Component setting. 

Solution 2: Open the EzI2C slave component configuration window, that is, the Configure ‘SCB_P4’ dialog and 

verify that the settings match the configuration of the Tuner Communication Setup dialog. See the CAPSENSE™ 
Component datasheet for details on tuner usage. 

Cause 3: Your I2C pins are not configured correctly. 

Solution 3: Open the .cydwr file in Workspace Explorer and ensure the pin assignment matches what is 
physically connected on the board. 

Cause 4: You did not include the CAPSENSE™ TunerStart API or another required tuner code. 

Solution 4: Add the tuner code listed in CAPSENSE™ Component datasheet to your main.c and reprogram the 
device. 

5.3.7.2 I am unable to update parameters on my device through the tuner 

Cause 1: Your communications settings on the device are incorrect. 

Solution 1: Review and make sure the settings in the UART/EZI2C configurator dialog and Tuner 

Communication Setup dialog match. Make sure that the sub-address size is equal. 

5.3.7.3 I can connect to the device but I do not see any raw counts 

Cause 1: You did not add the tuner code to your project. 

Solution 1: Review the Tuner GUI section and add the tuner code to your main.c and reprogram the device. 

5.3.7.4 Difference counts only change slightly (10 to 20 counts) when a finger is 

placed on the sensor 

Cause 1: The gain of your system is too low. 

Solution 1: Review the Tuner GUI section of this document.  

Cause 2: Your sensor parasitic capacitance is very high. 

Solution 2: To confirm this issue, use the Built-in Self-Test (BIST) APIs documented in the Component 
datasheet. These functions allow you to read out an estimate of the sensor parasitic capacitance. You can also 
confirm this reading independently with an LCR meter.  

 

 

http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
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If your hardware has an option to enable Driven-shield signal and shield electrode, use this option in the 
advanced settings of the CAPSENSE™ Component configuration window. A driven shield around the sensors 

helps reduces the parasitic capacitance. When you enable this option, you may want to enable driving the 
shield to unused sensors by also changing the “Inactive Sensor connection” setting to “shield” in the advanced 

settings. If after enabling the shield, your CP remains greater than the supported range of parasitic capacitance 
by the PSoC™ device, review your board layout to reduce CP further, by following the PCB layout guidelines, 

and/or contact  Technical support to review your layout. See Component datasheet / middleware document 
for more details on the supported range of CP. 

Cause 3: Your overlay may be too thick. 

Solution 3: Review your Overlay Overlay thickness with respect to your Overlay thickness. 

Cause 4: Raw counts may be too close to saturation and hence, saturating when sensor is touched. 

Solution 4: Tune IDAC to ensure that raw counts are tuned to ~85 percent of the max raw count for a given 

sensor according to the Modulation and compensation IDACs section. 

5.3.7.5 After tuning the system, I see large amount of radiated noise during 

testing 

Cause 1: The sense clock frequency is causing radiated noise in your system. 

Solution 1: Reduce the sense clock frequency or enable PRS for your sensor based on Electromagnetic 

compatibility (EMC) considerations section. If it is already enabled, see the Electromagnetic compatibility 

(EMC) considerations section. 

Cause 2: Large shield electrode may be contributing to a large radiated noise. 

Solution 2: Reduce the size of shield electrode based on Layout guidelines for liquid tolerance. 

5.3.7.6 My scan time no longer meets system requirements after manual tuning 

Cause: The noise and CP of your system are high, which requires more scan time and filtering to achieve reliable 
operation. 

Solution: CP needs to be reduced. First, enable the Driven-shield signal and shield electrode in the advanced 

settings of the CAPSENSE™ Component configuration window and ensure gain is set as high as possible by 

reviewing the PCB layout guidelines. If your system still cannot meet final requirements, you may need to 
change your board layout to reduce CP further, review the PCB layout guidelines for the same. 

5.3.7.7 I am unable to calibrate my system to 85 percent 

Cause 1: Your sensor may have a short to ground. 

Solution: First, use a multimeter to check if there is a short between your sensor and ground. If it is present, 

review your schematic and layout for errors.  

Cause 2: Your sensor CP may be too high or too low. 

Solution: If your hardware has an option to enable Driven-shield signal and shield electrode, use this option 
in the advanced settings of the CAPSENSE™ Component configuration window. A driven shield around the 

sensors helps reduces the parasitic capacitance. If you do not have a hardware option to use shield or if after 
enabling the shield, your CP remains greater than the device supported CP, contact  Technical support to 
review your layout or for further application-specific guidance. 



  

 

 

Application Note 139 of 229 001-85951 Rev. AA  

   2021-10-01 

 

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide 
  

CAPSENSE™ performance tuning 

  

If you suspect the capacitance to be low compared to the minimum supported parasitic capacitance by the 
device, add a footprint of the capacitor to a pin. In the final design, if the CP is identified to be lower than the 

supported range, place an additional compensation capacitor to increase the sensor CP to the supported range 
by dynamically connecting it to the sensor while scanning. See the Component datasheet / middleware 

document to understand how to gang the sensors to an external compensation capacitor connected to a pin to 
increase the CP whenever required. 
 

 

Figure 100 Gang the sensors to the external compensation capacitor 

5.3.7.8 My slider centroid response is non-linear 

Cause: Layout may not meet hardware design guidelines to ensure proper linearity. 

Solution: Check the CP of the sensors using the built-in self-test option in the General tab of the CAPSENSE™ 

configuration window and update the layout according to the Slider design section. See the Component 
datasheet / middleware document section for details on BIST API. 

5.3.7.9 My slider segments have a large variation of CP 

Cause: Your layout design caused your sensors to have an unbalanced CP. 

Solution: Your layout needs to be updated. Review Slider design and update your layout as required. If this is 

not immediately possible, you should re-tune every sensor to have a similar response. This will be a long 

iterative process and the preferred method is to update the hardware, if possible.  
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5.3.7.10 Raw counts show a level-shift or increased noise when GPIOs are 

toggled 

Cause 1: The sensor traces are routed parallel to the toggling GPIOs on your PCB. 

Solution: Your layout needs to be updated. Review Trace routing and update your layout as required. If the 
layout cannot be modified at the current stage, you could evaluate the use of firmware filters to reduce the 
peak-to-peak noise and hence improve SNR. 

Cause 2: A large amount of current is being sinked through the GPIOs. 

Solution: Limit the amount of DC current sink through the GPIOs when CAPSENSE™ sensors are being scanned. 
See Schematic rule checklist. If the current sink through GPIOs is firmware-controlled, and the raw count-

level-shift caused by current sink has a large difference compared to the touch signal, you could implement 

firmware techniques like resetting or re-initializing the CAPSENSE™ baseline whenever the current sink is 

enabled through the GPIOs. The baseline of the CAPSENSE™ sensor could be reset by using the 
CapSense_InitializeWidgetBaseline() API function as shown below:  

CapSense_InitializeWidgetBaseline(CapSense_CSD_BUTTON_WDGT_ID); 
 

 
Figure 101 Resetting baseline using firmware technique 
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Cause 3: You did not follow the guidelines mentioned in Sensor pin selection section. 

Solution: Follow the recommendations in Sensor pin selection section. In addition, for PSoC™ 6 family of 
devices, follow these guidelines on drive mode strength, switching frequency and slew rate selection, and so 
on: 

• Reduce the drive strength of the switching GPIOs. Table 20 lists the available drive strength options for the 
GPIOs. Figure 102 shows an example on how to select the drive strength of the GPIOs using the Device 
configurator in the ModusToolbox™ project. 

 Drive strength for GPIOs 

Drive strength Drive current in mA 

Full 8  

1

2
 4  

1

4
 2  

1

8
 1 

• Decrease the switching frequency of the GPIO being toggled. 

• Use GPIO slew rate as SLOW mode (note that this limits the toggling frequency to 1.5 MHz). See Table 38 for 
more details. 

• Use PRS as the Sense clock source.  

• If possible, reduce VDDA to lower than 2.7 V. 

• Try to restrict GPIO switching to intervals between CAPSENSE™ scans. 
 

 
Figure 102 Selecting drive strength for GPIOs 

 

https://www.cypress.com/file/492971/download
https://www.cypress.com/file/492971/download


  

 

 

Application Note 142 of 229 001-85951 Rev. AA  

   2021-10-01 

 

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide 
  

CAPSENSE™ performance tuning 

  

5.3.7.11 I am getting a low SNR 

Cause 1: Sensor is not tuned properly. 

Solution: Follow the tuning guidelines in CAPSENSE™ performance tuning. 

Cause 2: CAPSENSE™ and other peripherals are not properly assigned to the recommended pin.  

Solution: See Sensor pin selection and Raw counts show a level-shift or increased noise when GPIOs are 
toggled for more details. 

Cause 3: HFCLK source may be causing higher noise for a PSoC™ 6 device. 

Solution: For the best performance of CAPSENSE™ in PSoC™ 6 family of devices, use HFCLK derived from the 
IMO/ECO+PLL clock source. This clock source provides the best SNR performance. Figure 103 shows how to 

change the clock settings using the System tab in the Device configurator for a ModusToolbox™ project. See 
AN221774 - Getting started with PSoC™ 6 MCU for more details on changing the device clock. 
 

 

Figure 103 Changing clock settings in device configurator 

5.3.7.12 I am observing a low CM for my CSX button 

Cause: The mutual capacitance between the Tx and Rx electrode should be higher than approximately 750fF 

for proper IDAC calibration. 

Solution:  It is recommended to have two free pins in your device with footprint to add extra Capacitance if CM 

of the button turn out to be low. We could then increase the sensor CM to the supported range by dynamically 

connecting external capacitor to the CSX sensor while scanning as shown in the below figure, where Pin1 is 
ganged to the Tx pin and Pin2 is ganged to the Rx pin of the sensor respectively. This will help in mitigating low 
CM risk if it is found during testing phase. See Component datasheet / middleware document to understand 
how to gang the sensor.  

 
 

https://www.cypress.com/file/492971/download
https://www.cypress.com/documentation/application-notes/an221774-getting-started-psoc-6-mcu
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Figure 104 shows the addition of the external capacitor as a button widget in the CAPSENSE™ component and 
assigning dedicated pins to the Tx and Rx electrode. Figure 105 shows the ganging of the sensor to the external 

capacitor by assigning Selected pins to both sensor pin and external capacitor pin, this must be done for both 
Rx and Tx electrode. There is no need to scan the external capacitor while scanning of the widgets, thus we can 

selectively scan widgets using the APIs CapSense_SetupWidget() and CapSense_Scan() provided by the 
CAPSENSE™ component. 
 

 

Figure 104 Ganging external capacitor to increase the CM of the sensor 

 

 
 

Figure 105 Assigning dedicated pins to the external capacitors 
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Figure 106 Gaining the external capacitor and sensor pin 
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6 Gesture in CAPSENSE™ 

6.1 Touch gesture support 

The CAPSENSE™ Component in PSoC™ 4 and PSoC™ 6 MCU supports the gesture detection feature for sliders 

and touchpad widgets. It allows to identify different predefined gestures based on touch patterns on sliders 
and touchpad widget. 

Note that the gesture detection feature is available for selected device part numbers. If you intend to use the 
gesture feature of the component, ensure that you select the device that supports this feature. 

6.2 Gesture groups 

Gestures are divided into several groups: Click, one-finger scroll, two-finger scroll, two-finger zoom, one-finger 
edge swipe, one-finger flick, and one-finger rotate. 

Table 21 lists the gestures supported by various widgets. See Component datasheet / middleware document 
for more details on how these gestures are defined and the parameter that to be configured in the CAPSENSE™ 
configurator to detect these gestures. 

 Gesture supported by different CAPSENSE™ widgets 

Widget type 

Gesture groups 

Click 
One-finger 

scroll 

Two-finger 

scroll 

One-finger 

flick 

One-finger 

edge swipe 

Two-finger 

zoom 

One-finger 

rotate 

Button ✓ − − − − − − 

Linear slider − ✓ − ✓ − − − 

Radial slider ✓ − − − − − − 

Matrix buttons  − − − − − − 

Touchpad ✓ − − ✓ − − ✓ 

Proximity  − − − − − − 
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6.3 One-finger gesture implementation 

Implementing gesture detection involves following steps:  

1. Tuning the widget  

2. Selecting predefined gesture  

3. Firmware implementation with timestamp  

4. Tuning gesture parameters  

6.3.1 Tuning the widget 

Tune the CAPSENSE™ hardware and software parameters for the widget. Generally, in a gesture application, 

because of the speed and orientation of the finger movement changes, the finger may make a very little contact 

with the widget. This could be confirmed by viewing the centroid data in the Tuner GUI when the gesture is 
being performed. If the sensitivity is good enough, you will get the data without any break. If you observe any 
break in the centroid data, increase the sensitivity until the data for the gesture is complete and appear without 
any break.  

Ensure that you get a SNR above 5:1 for the slight finger contact that you may want to detect. Also, ensure that 
you have a linear centroid response w.r.t the finger position on the slider or touchpad. Tune the sensors using 

guidelines in section Slider widget tuning or Touchpad widget tuning for achieving the same  

6.3.2  Selecting predefined gesture 

First, enable Gestures in the Gesture tab in CAPSENSE™ Component. All gesture-related configuration 

parameters appear after enabling gestures; these parameters are systematically arranged by widgets / gesture 

groups as Table 21 shows. According to the application requirement, you can enable and disable gestures by 
selecting the specific checkbox. Do the following to enable gestures and configure the corresponding 
parameters. 

• Select the widget for which gesture feature must be enabled in the Widget pane. If you have multiple 
widgets in the project, the PSoC™ Creator allows gesture recognition only one widget. However, in 
ModusToolbox™, gesture recognition can be enabled on more than one widget.  

• Select the desired gestures in Gestures pane. User has an option to select multiple gestures. In 

PSoC™ Creator, you cannot enable scroll gesture and flick gesture at the same time. This is applicable for 
both sliders and touchpad. However, in ModusToolbox™, you can enable more than one gesture according 
to the application requirement. 

• Configure all parameters in the Parameter pane. When a gesture is selected, the right pane of the window 

dispays the parameters of the selected gesture group. See the Component datasheet / middleware 
document. 
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Figure 107 Configuring gestures in CAPSENSE™ component  

6.3.3 Firmware implementation with timestamp 

See the code example PSoC™ 4 CAPSENSE™ Touchpad Gestures to understand how to implement timestamp 

for gesture recognition. Because each gesture has a pattern of touch that changes with time, a reference 
timestamp is needed for properly getting the touch data with respect to time. This time stamp represents the 
sampling rate for the gesture recognition algorithm. Both the centroid positions and their respective 

timestamp are used by the gesture decoding API to determine different predefined gesture patterns that are 

applicable for the widget.  

First, tune the widget using the procedure described in Tuning the widget and determine the time interval 
between two successive CAPSENSE™ scans in the firmware. Update the timestamp exactly with this duration. 
The way to accurately determine it is to toggle a GPIO in the firmware after the CAPSENSE™ scan is complete 
and find the time duration using an oscilloscope. 

6.3.4 Tuning gesture parameters 

This section describes how to set gesture parameters for sliders; the same procedure could be extended to the 

gesture groups supported by touchpads. CAPSENSE™ sliders support Click, One-finger Scroll, and One-finger 
flick gesture features. See the Component datasheet / middleware document. 

 

https://www.cypress.com/documentation/code-examples/ce224820-psoc-4-capsense-slider-and-gestures
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6.3.4.1 Using tuner GUI for tuning gesture parameters 

You can use the Gesture View in Tuner GUI for tuning the gesture parameters and visualize and analyze the 
performance of the gesture detected in the end system. 

Ensure the following while using Tuner GUI for gestures:  

1. For tuning gesture parameters in runtime, Tuner GUI must be used with EZI2C. Use Synchronized 
communication mode for visualizing the detected gestures in runtime.  For more details on using the Tuner 

GUI, see the Component datasheet / middleware document and the PSoC™ 4 CAPSENSE™ touchpad 
gestures code example. All the parameters for the gestures that are available in the CAPSENSE™ 
configurator are available in Tuner GUI, where you can directly edit these values for tuning.  

2. As Figure 108 shows, the Gesture View tab is organized into different panes as follows: 

Gesture Event History pane shows detected gestures and their positions on the widget.  

Detected Gesture pane indicates the detected gesture. If the delay checkbox is enabled, a gesture picture is 
displayed for the specified time-interval; if delay is disabled, the last reported gesture picture is displayed 
until a new gesture is reported. 

Cypress® Icon in the Tuner GUI moves according to the scroll gesture. It indicates how well the parameter 
of the scroll gesture is tuned. This dynamic feature gives performance feedback for further fine-tuning 
gesture parameters. 

 

 
Figure 108 Tuner GUI for gestures 

3. Determining the event duration using Tuner GUI. A general equation to determine the event duration is 
given by Equation 71.  

Equation 71. Gesture duration 

 𝐸𝑣𝑒𝑛𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑁𝑜. 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑥 𝑇𝑠𝑎𝑚𝑝𝑙𝑒  

Where, 

𝑁𝑜. 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = Number of samples the gesture event occurred. This data could be obtained from the Graph 

View in the Tuner GUI.   

𝑇𝑠𝑎𝑚𝑝𝑙𝑒 = Time interval between two samples. 

https://www.cypress.com/documentation/code-examples/ce224820-psoc-4-capsense-slider-and-gestures
https://www.cypress.com/documentation/code-examples/ce224820-psoc-4-capsense-slider-and-gestures
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𝑇𝑠𝑎𝑚𝑝𝑙𝑒 =
1

𝑅𝑒𝑓𝑟𝑒𝑠ℎ 𝑟𝑎𝑡𝑒
 

 

 

Figure 109 Determining the Gesture parameters using Tuner GUI 

6.3.4.2 Click  

There are two type of click gestures: single-click and double-click. Table 22 lists the parameters to be 

configured for the Click gesture in both PSoC™ Creator and in ModusToolbox™. See Component datasheet / 

middleware document. Table 23 provides the recommended values of the gesture parameter for the Click 

gesture. 

 Click gesture parameters 

Gesture PSoC™ Creator ModusToolbox™ 

Single-click  

One finger minimum touch duration  Minimum click timeout 

One finger maximum touch duration  Maximum click timeout 

Maximum position displacement Maximum click distance  

Double-click  

Minimum interval between touches Minimum second click interval  

Maximum interval between touches Maximum second click interval 

Maximum displacement for the second click Maximum second click distance 

 

Touch event: No of samples 2 
Touch event: No of samples 3 

Duration between two touch: No of samples 8 

Maximum position displacement 

4 
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 Recommended values for click gestures 

Parameters Typical values 

Maximum position displacement 20% of maximum position of the slider 

Maximum position displacement for the second click  20% of maximum position of the slider 

Minimum interval between touches (ms) 60 

Maximum interval between touches (ms) 400 

One finger minimum touch duration (ms) 20 

One finger maximum touch duration (ms) 400 

6.3.4.2.1 Single click 

A single click is defined as a touch-down event followed by a lift-off. Figure 110 shows the spatial and timing 
condition that must be satisfied for a valid single-click event. 
 

 

Figure 110 Single-click gesture 

From Figure 110, at time T1, the finger touched down on the slider; at time T2, the finger is lifted off from the 
slider. For a valid single click, the touch-down duration should be between the “One finger minimum touch 

duration” and “one-finger maximum touch duration” and the relative position of the liftoff from the initial 
position of touch should be less than the “Maximum position displacement” parameter. 

 

The duration of each single-click event can be determined by using Equation 71 by finding the number of 
samples for the single click in the Graph view of Tuner GUI and the refresh rate as shown in Figure 109. From 
the single-click event duration, fix the parameters “One-finger minimum touch duration” and “One-finger 

maximum touch duration”. The maximum position displacement parameter can be determined by observing 
the maximum variation in the centroid position using the Tuner GUI as shown in Figure 109. The 

recommended value is 20 percent of the maximum centroid position of the slider as mentioned in Table 23. 
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6.3.4.2.2 Double click 

A double click is two single-clicks event occurring one after another with the second click occurring between 
the minimum and maximum time interval between the two touches. In addition, the relative position of the 

second click from the initial position of touchdown event should be less than the maximum position 
displacement for the second click. Figure 111 shows the spatial and timing conditions that must be satisfied 
for a valid double-click event. 
 

 

Figure 111 Double-click gesture 

From Figure 111, at time T1, the finger touched down on the slider for the first click; at time T2, the finger is 

lifted off from the slider. At T3, the finger touched down on the slider for the second click; at T4, the finger is 
lifted off from the slider. For a valid double click, each click should satisfy the condition of single click, and the 
second click should occur between Minimum and Maximum interval between touch parameters. 

Using the Graph view in the Tuner GUI, observe the double-click touch data. Determine the parameter of single 

click as mentioned in the Single  section. Determine the duration between the two touches using the Graph 

view in the Tuner GUI and set the value of the minimum and maximum intervals between touch parameters. A 

typical captured data for the double-click event is shown in Figure 109. 

6.3.4.3 Scroll  

There are two different scroll gestures that can be detected on sliders: One-finger scroll and One-finger Inertial 
scroll. See Component datasheet / middleware document. Table 24 shows the parameters to be configured 
for the scroll gesture. Note that One-finger Inertial Scroll gesture is not supported in ModusToolbox™. 
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 One finger scroll parameters 

Gesture PSoC™ Creator ModusToolbox™ 

One-finger scroll 

Position threshold N  Minimum scroll distance 

Scroll step - 

Debounce Scroll debounce 

One-finger inertial scroll 
Position inertial threshold 

NA 
Count level 

6.3.4.3.1 One-finger scroll 

A One-finger Scroll gesture is a combination of a touchdown followed by a displacement in specific direction. 

The change in position between two consecutive scans must exceed the Position Threshold value given in the 
configurator after tuning. See Component datasheet / middleware document. 

Follow these steps to set the scroll gesture parameter values as shown in Table 24.  

1. Determine the number of samples of the scroll gesture from the Graph view (Centroid position) in Tuner 
GUI. 

2. By using Equation 71 determine the duration of the complete scroll.  

3. Determine the change in centroid position for the complete scroll using the Tuner GUI. 

4. Determine Position Threshold Equation 72. Each gesture is scanned at a sample rate that is set in the 
timestamp in the application code. The position threshold is given by the change in the centroid position for 

the duration that is set in the timestamp.  

Equation 72. Equation to determine position tshreshold 

 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑐𝑟𝑜𝑙𝑙
 𝑥 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 

5. In PSoC™ Creator, set four different position thresholds and their scroll count values in the configurator, 

which are determined by varying the speed of the scroll gesture. Now, change the speed of scroll and repeat 

the steps 1 – 4 and set these position threshold values. In ModusToolbox™ has only one parameter: 
Minimum Scroll distance; determine its value in the same way you determined the position threshold.  

6. Read the scroll step from the CAPSENSE™ data structure and use it to control the speed and smoothness of 
the scroll gesture. The scroll step depends on the position threshold. This scroll step is used in the 

application code to control the actual variable value to be changed with respect to scroll. Note that the 
scroll step parameter is not available in ModusToolbox™. 

7. Set the maximum slider position as ten times the dimension of the slider as a general rule. If you set 

scrollDistanceMin=10, everything below a 1-mm movement will not detect the scroll gesture. Everything 

above this number might detect a gesture. 

Observe the Cypress® icon in the Tuner GUI (see Figure 108) to get a feedback on how well the tuning has been 
done for the scroll gesture in the given hardware. You can also print the variable that must be controlled by 

scroll through UART to visualize how the value is changing with respect to scroll. This could be used as a visual 

feedback. The position threshold parameters and the corresponding step counts should be tuned until the 
variation in the variable value with respect to scroll meet the requirement of the end user application. 
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6.3.4.3.2 One-finger inertial scroll 

The one-finger Inertial scroll gesture is defined as a touchdown event followed by a minimum displacement in a 
specific direction, and then a liftoff. The movement of scroll will automatically stop when it reaches the end 

value of the variable. See Component datasheet / middleware document.  

The gesture parameter is provided in Table 24. The position inertial threshold parameter is given by the 

minimum change in centroid position that is required before a liftoff; its value can also be determined by steps 
in the One-finger scroll section. The count value parameter defines the momentum of scroll; it can take two 
possible values: low or high. Choose the count value according to the end application requirement.  

6.3.4.4 One-finger flick 

A flick gesture is a touchdown event followed by a high-speed displacement and a liftoff event (see Component 
datasheet / middleware document). The flick gesture is similar to the One-finger Inertial Scroll; the only 
difference is that it requires a high-speed displacement followed by a liftoff event within the maximum sample 
interval defined in the configurator. You can determine the position threshold and the maximum sample 

interval by following the same procedure in One-finger scroll section and by using Equation 71. 

 One-finger flick gesture parameters 

Gesture PSoC™ Creator ModusToolbox™ 

One Finger Flick Gesture 
Position threshold Minimum flick distance 

Maximum sample interval Maximum flick timeout 

6.4 Two-finger gesture implementation 

Two-finger gestures such as Two-finger Scroll and Two-finger Zoom are supported in the touchpad widget. You 
must enable this feature in the Widget Details tab of the Touchpad Widget. The procedure for tuning the 
parameters is the same as mentioned in the One-finger gesture implementation section (see Component 

datasheet / middleware document). Figure 112 shows how to enable two-finger touch gestures in the 

configurator, select the centroid type as 5 x 5 Centroid, and set the two-finger detection as True. 
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Figure 112 Enabling two-finger touch gestures in the CAPSENSE™ component 

6.5 Advanced filters for gestures 

Advanced filtering features for gestures such as Ballistic multiplier, Adaptive IIR filter, and the Edge correction 

feature are available to improve gesture recognition and the user experience.  

See Component datasheet / middleware document. 
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7 Design considerations 

This chapter explains the firmware and hardware design considerations for CAPSENSE™. 

7.1 Firmware 

The CAPSENSE™ component provides multiple application programming interfaces to simplify firmware 
development. The CAPSENSE™ Component datasheet provides a detailed list and explanation of the available 

APIs. You can use the CAPSENSE™ Example projects provided in PSoC™ Creator or ModusToolbox™ to learn 
schematic entry and firmware development. See Chapter 4 for more details. 

The CAPSENSE™ scan is non-blocking in nature. The CPU intervention is not required between the start and the 
end of a CAPSENSE™ scan. Therefore, you can use CPU to perform other tasks while a CAPSENSE™ scan is in 

progress. However, note that CAPSENSE™ is a high-sensitive analog system. Therefore, sudden changes in the 
device current may increase the noise present in the raw counts. If you are using widgets that require high 

sensitivity such as proximity sensors, or buttons with thick overlay, you should use a blocking scan. Example 
firmware for a non-blocking scan is shown below. 

Code Listing 1  

/* Enable global interrupts */ 

    CyGlobalIntEnable; 

 

  /* Start EZI2C component */ 

    EZI2C_Start(); 

 

    /* 

    * Set up communication data buffer to CapSense data structure to 

be 

    * exposed to I2C master at primary slave address request. 

    */ 

    EZI2C_EzI2CSetBuffer1(sizeof(CapSense_dsRam), 

    sizeof(CapSense_dsRam), 

    (uint8 *)&CapSense_dsRam); 

 

    /* Initialize CapSense component */ 

    CapSense_Start(); 

    /* Scan all widgets */ 

    CapSense_ScanAllWidgets(); 

 

    for(;;) 

    { 

        /* Do this only when a scan is done */ 

        if(CapSense_NOT_BUSY == CapSense_IsBusy()) 

http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
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Code Listing 1  

        {/* Process all widgets */ 

            CapSense_ProcessAllWidgets(); 

            /* Scan result verification */ 

            if (CapSense_IsAnyWidgetActive()) 

            { 

                /* Add any required functionality 

                based on scanning result */ 

            } 

            /* Include Tuner */ 

            CapSense_RunTuner(); 

            /* Start next scan */ 

            CapSense_ScanAllWidgets(); 

        } 

        /* CPU Sleep */ 

        CySysPmSleep(); 

    } 

} 

You should avoid interrupted code, power mode transitions, and switching ON/OFF peripherals while a high-

sensitivity CAPSENSE™ scan is in progress. However, if you are not using high-sensitivity widgets, you can use 

CPU to perform other tasks. You can also use low-power mode of PSoC™ to reduce the average power 
consumption of the CAPSENSE™ system, as explained in the next section. Monitoring and verifying the raw 
counts and SNR using the Tuner GUI is recommended if you are using a non-blocking code.  

If you want to develop firmware using the ModusToolbox™ software, see the references in the ModusToolbox™ 

section of this document. 

7.1.1 Low-power design 

PSoC™ low-power modes allow you to reduce overall power consumption while retaining essential 
functionality. See AN86233 - PSoC™ 4 low-power modes and power reduction techniques, for a basic 
knowledge of PSoC™ 4 low-power modes, see AN219528 - PSoC™ 6 MCU low-power modes and power 

reduction techniques, for PSoC™ 6’s low-power modes and AN210998 - PSoC™ 4 low-power CAPSENSE™ 

design, for design a low-power CAPSENSE™ application. 

The CPU intervention is not required between the start and the end of a CAPSENSE™ scan. If the firmware does 
not have any additional task other than waiting for the scan to finish, you can put the device to Sleep mode 
after initiating a scan to save power. When the CSD hardware completes the scan, it generates an interrupt to 
return the device to the Active mode. 

There are different firmware and hardware techniques to reduce the power consumption of the CAPSENSE™ 
system.   

1. If you use APIs that scan multiple widgets together, the device returns to Active mode after finishing the 

scan of a single widget. Therefore, you should scan each widget individually for reducing the power 

consumption in the design. See the CAPSENSE™ Component datasheet. 

http://www.cypress.com/?rID=78797&source=an85951
https://www.cypress.com/documentation/application-notes/an219528-psoc-6-mcu-low-power-modes-and-power-reduction-techniques
https://www.cypress.com/documentation/application-notes/an219528-psoc-6-mcu-low-power-modes-and-power-reduction-techniques
http://www.cypress.com/go/AN210998
http://www.cypress.com/go/AN210998


  

Application Note 157 of 229 001-85951 Rev. AA  

   2021-10-01 

 

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide 
  

Design considerations 

  

2. You can use the Deep-Sleep mode of PSoC™ to considerably reduce the power consumption of a 
CAPSENSE™ design. However, the CAPSENSE™ hardware is disabled in the Deep-Sleep mode. Therefore, the 

device must wake up frequently to scan for touches. You can use the watchdog timer (WDT) in PSoC™ to 
wake up the device from the Deep-Sleep mode at frequent intervals. Increasing the frequency of the scans 

improves the response of the CAPSENSE™ system, but it also increases the average power consumption.  

3. As the number of sensors in the design increases, the device has to spend more time in the Active mode to 
scan all sensors. This, in turn, increases the average power consumption. For saving power in a design with 
multiple sensors, you should include a separate proximity loop that surrounds all the sensor.  When the 
device wakes up from the Deep-Sleep mode, only scan this proximity sensor. If the proximity sensor is 
active, the device must stay in the Active mode and scan other sensors. If the proximity sensor is inactive, 

the device can return to the Deep-Sleep mode. Figure 113 illustrates this process. 
 

Proximity Sensor Inactive?

Scan All CapSense Sensors Individually

Enter Deep-Sleep mode

Scan Only the Proximity Sensor

Touch         

Detected ?

No

Yes

No

Yes

Timed Wakeup (WDT)

 

Figure 113 Low-power CAPSENSE™ Design 

4. The CAPSENSE™ component can reduce power consumption by reducing the execution time of scanning by 

ganging sensors together and managing scanning at the application level. In this case, all the sensors in the 

design are “ganged” i.e., simultaneously connected to the AMUX bus to form a virtual sensor. See the code 
example PSoC™ 4 low power ganged sensor and AN92239 - Proximity sensing with CAPSENSE™ for 
details on ganged sensor implementation. A ganged sensor has different tuning parameters because its 
properties are different compared to considering the sensors individually. Therefore, it should be 

considered as a single CSD button and tuned separately; see Manual tuning. The ganged sensor is 

periodically scanned by using a watchdog timer (WDT); if the ganged sensor reports a touch event, enable 
the scanning of the actual widgets that need to be scanned. This is helpful in CAPSENSE™ designs that 
requires Wake on Touch modes. The procedure is similar to what is explained in Figure 113. You can 
achieve very low system current while maintaining a good touch response, by properly tuning CAPSENSE™ 

and the wakeup interval. This technique could also be used with the CSX touchpad widget.  

https://www.cypress.com/documentation/code-examples/ce210290-psoc-4-capsense-low-power-ganged-sensor
https://www.cypress.com/documentation/application-notes/an92239-proximity-sensing-capsense
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5. If high-speed peripherals such as system timers and I2C are required, you can put the CPU to sleep mode 
instead of going to deep sleep mode.  

6. You can also add a shield hatch in the design, as explained in Driven-shield signal and shield  to reduce the 
parasitic capacitance and therefore, the scan time.  The scan time and power consumption is directly 
related; thus, the power consumption is reduced by lowering the scan time. 

Note: In PSoC™ 4000 devices, it is not recommended to enter Sleep mode if a CAPSENSE™ scan is in 
progress.  

7.2 Sensor construction 

A capacitive sensor can be constructed using different materials depending on the application requirement. In 

a typical sensor construction, a conductive pad, or surface that senses a touch is connected to the pin of the 
PSoC™ using a conductive trace or link. This whole arrangement is placed below a non-conductive overlay 
material and the user interacts on top of the overlay.  

Figure 114 shows the most common CAPSENSE™ sensor construction. 

 

 

Figure 114 CAPSENSE™ sensor construction 

The copper pads etched on the surface of the PCB act as CAPSENSE™ sensors. A nonconductive overlay serves 
as the touch surface. The overlay also protects the sensor from the environment and prevents direct finger 

contact. A ground hatch surrounding the sensor pad isolates the sensor from other sensors and PCB traces. 

If liquid tolerance is required, you should use a shield hatch instead of the ground hatch. In this case, drive the 
hatch with a shield signal instead of connecting it to ground. See Liquid tolerance section for details. 

The simplest CAPSENSE™ PCB design is a two-layer board with sensor pads and hatched ground plane on the 

top, and the electrical components on the bottom. Figure 115 shows an exploded view of the CAPSENSE™ 

hardware. 
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Figure 115 CAPSENSE™ hardware 

Sensors may also be constructed by using materials other than copper, such as indium tin oxide (ITO) or 
printed ink on substrates such as glass or a flex PCB. In some cases, springs can also be used as CAPSENSE™ 

sensors as Figure 116 shows, to create elevated sensors that allow overlay to be placed at an elevated distance 

from the PCB. See Getting started with CAPSENSE™ design guide for PCB design considerations specific to 
spring sensors and other non-copper sensors such as ITO and printed ink. 
 

 

Figure 116 Sensor construction using springs as sensors 

7.3 Overlay selection 

7.3.1 Overlay material 

The overlay is an important part of CAPSENSE™ hardware as it determines the magnitude of finger capacitance. 

The finger capacitance is directly proportional to the relative permittivity of the overlay material. See Finger 
capacitance for details. 

Table 26 shows the relative permittivity of some common overlay materials. Materials with relative permittivity 
between 2.0 and 8.0 are well suited for CAPSENSE™ overlay. 

 Relative permittivity of overlay materials 

Material r 

Air 1.0 

Formica 4.6 – 4.9 

Glass (Standard) 7.6 – 8.0 

Glass (Ceramic) 6.0 

PET film (Mylar) 3.2 

http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense
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Material r 

Polycarbonate (Lexan) 2.9 – 3.0 

Acrylic (Plexiglas) 2.8 

ABS 2.4 – 4.1 

Wood table and desktop 1.2 – 2.5 

Gypsum (Drywall) 2.5 – 6.0 

Note: Conductive materials interfere with the electric field pattern. Therefore, you should not use 

conductive materials for overlay. You should also avoid using conductive paints on the overlay. 

7.3.2 Overlay thickness 

Finger capacitance is inversely proportional to the overlay thickness. Therefore, a thin overlay gives more signal 

than a thick overlay. See Finger capacitance for details.  

Table 27 lists the recommended maximum thickness of acrylic overlay for different CAPSENSE™ widgets. 

 Maximum thickness of acrylic overlay 

Widget 
Maximum thickness (mm) –  

4th Generation CAPSENSE 

Maximum thickness (mm) –  

5th Generation CAPSENSE 

Button 5 18 

Slider 51 18 

Touchpad 0.5 3 

Because Finger capacitance also depends on the dielectric constant of the overlay, the dielectric constant also 
plays a role in the guideline for the maximum thickness of the overlay. Common glass has a dielectric constant 

of approximately εr = 8, while acrylic has approximately εr = 2.5. The ratio of εr/2.5 is an estimate of the overlay 
thickness relative to plastic for the same level of sensitivity. Using this rule of thumb, a common glass overlay 
can be about three times as thick as a plastic overlay while maintaining the same level of sensitivity.  

In addition, avoid using very thin or no overlay. It is important to have a minimum overlay thickness in a 
CAPSENSE™ design for the following reasons: 

a) An overlay provides protection from the environmental condition, prevents direct finger contact, and gives 

ESD protection. The overlay thickness should be small enough to give a good signal, and decided based on 

the button size and the strength to withstand ESD. See AN64846 - Getting started with the CAPSENSE™.  

b) For the CSD button, if there is no overlay the buttons will be over sensitive. 

c) For sliders, if there is no overlay, the raw count may saturate for the slider segments and may cause non-
linear centroid response for slider. See Slider design. 

d) For the CSX sensor, it is recommended to have a minimum overlay thickness of 0.5 mm. If it is violated, 

sudden decrease in raw count is observed when a finger is placed on a sensor or a water drop falls on the Tx 

and Rx electrodes. See Effect of grounding. 

                                                                    
1 For a 5-mm acrylic overlay, the SmartSense Component requires a minimum of 9-mm finger diameter for slider operation. If the finger diameter is less than 9 mm, Manual 

Tuning should be used.  

https://www.cypress.com/file/41076/download
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7.3.3 Overlay adhesives 

The overlay must have a good mechanical contact with the PCB. You should use a nonconductive adhesive film 
for bonding the overlay and the PCB. This film increases the sensitivity of the system by eliminating the air gap 

between the overlay and the sensor pads. 3M™ makes a high-performance acrylic adhesive called 200MP that is 
widely used in CAPSENSE™ applications. It is available in the form of adhesive transfer tapes; example product 
numbers are 467MP and 468MP. 

7.4 PCB layout guidelines 

PCB layout guidelines help you to design a CAPSENSE™ system with good sensitivity and high Signal-to-noise 

ratio (SNR). 

7.4.1 Sensor CP 

In a CAPSENSE™ system design, the CP of the sensor must be within the supported range of the device. You can 

find the supported CP range in the Component datasheet / middleware document. The main components of 

CP are trace capacitance, sensor pad capacitance, and pin capacitance of the device. The pin capacitance is 
device-dependent (see the Device datasheet), so you can only design your sensor and trace capacitance to be 

able to meet the CP criteria in the datasheet. The relationship between CP and the PCB layout features is not 
simple. CP increases with an increase in the sensor pad size and trace length and width, and with a decrease in 

the gap between the sensor pad and the ground hatch.  

There are many ways to decrease the CP:  

• Decrease the trace length and width as much as possible. Reducing the trace length increases noise 

immunity. 

• Drive the hatch with a shield signal. See Driven-shield signal and shield electrode. 

Reducing the sensor pad size is not recommended because it also reduces the finger capacitance. In some 

special cases, such as small sensor pad and very small trace length due to placement of the sensor pad close to 
the device, there is a possibility of the sensor CP to be lower than the supported minimum CP by the device. In 
that case, add a footprint of the capacitor across the sensor or any unused pin. If the CP is identified to be lower 

than the supported range, place a 4.7-pF capacitor across the sensor or on the unused pin and gang the 

capacitor during the CAPSENSE™ scan, refer to the FAQ 5.3.7.7 for more details. This will increase the CP of the 
sensor to the supported range. 

If the sensor CP is very high due to long traces or because of a nearby ground, use the mutual-capacitance 
sensing method so that the sensitivity is not degraded because of the high CP value. The sensitivity of the 

CAPSENSE™ sensor in a mutual-capacitance sensing method is independent of the sensor CP.  

7.4.2 Board layers 

Most applications use a two-layer board with the sensor pads and the hatched ground planes on the top side 
and all other components on the bottom side. PCBs that are more complex use four layers.  

• FR4-based PCB designs perform well with board thickness ranging from 0.020 inches (0.5 mm) to 
0.063 inches (1.6 mm). 

• Flex circuits work well with CAPSENSE™ too. You can use flex circuits for curved surfaces. All PCB guidelines 
in this document also apply to flex. You should use flex circuits with thickness 0.01 inches (0.25 mm) or 
higher for CAPSENSE™. The high breakdown voltage of the Kapton® material (290 kV/mm) used in flex 
circuits provides built in ESD protection for the CAPSENSE™ sensors. 
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7.4.3 Button design 

7.4.3.1 Self-capacitance button design 

The self-capacitance button has a single electrode and can have different shapes and size as recommended 
below. 

Shape: You should use circular sensor pads for CAPSENSE™ buttons. Rectangular shapes with rounded corners 

are also acceptable. However, you should avoid sharp corners (<90º) since they concentrate electric fields. 

Figure 117 shows recommended button shapes. 

 

 

Figure 117 Recommended button shapes 

Size: Button diameter should be 5 mm to 15 mm, with 10 mm suitable for most applications. A larger diameter 
is appropriate for thicker overlays. 

Spacing: The width of the gap between the sensor pad and the ground hatch should be equal to the overlay 
thickness, and range from 0.5 mm to 2 mm. For example, if the overlay thickness is 1 mm, you should use a 1-

mm gap. However, for a 3-mm overlay, you should use a 2-mm gap. 

Select the spacing between two adjacent buttons such that when touching a button, the finger is not near the 
gap between the other button and the ground hatch, to prevent false touch detection on the adjacent buttons, 

as Figure 118 shows.  
 

Button 1 Button 2GND

                                                                               Overlay

                                                                                  PCB

GND

Finger

Button 1 Button 2GND

                                                 Overlay

                                                  PCB
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Finger

Good Bad
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Figure 118 Spacing between buttons 
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7.4.3.2 Mutual-capacitance button design 

Mutual capacitance sensing measures the change in capacitive coupling between two electrodes. The sensor 
pattern should be designed in such a way that the finger disturbs the electric field between the Tx and Rx 

electrodes to a maximum extent. There are standard button patterns that could be used for the mutual 
capacitance button design and their parameters could be modified based on the application requirement. 
Fishbone pattern is one of the mutual capacitance patterns which give better performance in terms of SNR. 

7.4.3.2.1 Fishbone pattern 

Prongs or fishbone are standard shapes for mutual-capacitance buttons. The Tx forms a box or ring around the 

button for shielding Rx from noise. There are interlaced Tx and Rx prongs inside the border to form the electric 
field. Figure 119 shows an example of a two-prong fishbone sensor structure with top and bottom view with 

hatched ground. The gap between the outer wall of the Tx electrode and the coplanar hatch ground should be 
greater than the air-gap of Tx and Rx electrodes. The reference plane (PCB bottom layer) of the Fishbone 

structure should have void region as shown in Figure 119. 
 

 

Figure 119 CSX Fish bone button pattern with two Rx prongs 

Table 28 lists the suggested fishbone button design parameters for some commonly used sensor sizes and 

overlay like glass and acrylic. As explained in section Sensor size, the recommended button size is to keep the 
button X and Y dimension close to the sum of expected user finger size and overlay thickness. However, the 

table lists multiple button sizes that you can chose from if you have constraints on available space on board or 
if you would like to have a bigger button for your application for ease of user interaction etc.  

Also, note that for a given button size, the achievable SNR decreases with increased overlay thickness. Thus, if 
you plan to use thick overlays (approx. > 1mm acrylic or 2mm glass) ensure to avoid compromising on button 

size due to board space because that will further limit the button SNR performance. Ensure to use bigger 
buttons (>= biggest expected finger size) for such thick overlays. And also, for small buttons better to have thin 

overlays for getting good SNR. 
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 Dimension of Fishbone buttons (all units in mm) 

Button 

size  
(X-size, Y-

size) (mm) 

Number 
of Rx-

prongs 

Air gap 

between 
Tx and Rx 

in mm 

Tx width 

in mm 

Rx width 

in mm 

X-wall 
wdth in 

mm 

Y-wall 
width in 

mm 

Y prong in 

mm 

5, 5 3 0.35 0.48 0.48 0.24 0.24 0.2 

10,7 3 0.75 0.92 0.92 0.46 0.46 0.2 

10,5 3 0.5 1.17 1.17 0.58 0.58 0.2 

10,10 2 0.9 1.60 1.60 0.80 0.80 0.2 

12, 12 2 1.3 1.70 1.70 0.85 0.85 0.2 

13, 10 2 1.1 2.15 2.15 1.08 1.08 0.2 

13, 13 2 1.5 1.75 1.75 0.88 0.88 0.2 

15, 15 2 1.7 2.05 2.05 1.03 1.03 0.2 

17, 17 2 2.3 1.95 1.95 0.98 0.98 0.2 

20, 13 2 1.8 3.20 3.20 1.60 1.60 0.2 

25, 13 2 2 4.25 4.25 2.13 2.13 0.2 

The above button design parameters in Table 28 ensure a good SNR performance if you follow the schematics 

and layout guidelines in this chapter. 

Note: In case if you expect a higher external noise in the design and for other complex cases you can 

contact  Technical support for any assistance in the button design. Refer to the section Noise in 

CAPSENSE™ system for more details about the external noise. And in the design if you expect a 
low CM then follow the guidelines mentioned in the section I am observing a low CM for my CSX  
for mitigating it.  

7.4.3.2.2 Button design for arbitrary shapes and dimensions 

Figure 120 shows the different orientation of Rx prongs in the Fish bone pattern, in Button A the Rx prong is 
perpendicular to the side of the button with larger dimension and in Button B the Rx prongs is parallel to the 

side of the button with larger dimension. Orientation of Rx prongs like in Button A results in optimized button 
pattern compared to Button B. Thus, it is always recommended to have Rx prongs perpendicular to the side of 

the button with larger dimension. Thus if you need a 10  13mm button, then simply use the 13  10 mm button 

from Table 27 and rotate it 90º to get 13  10 mm Noise in CAPSENSE™ system button pattern as shown in 
Figure 121. 
 

 

Figure 120 Orientation of Rx prongs 
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Figure 121 Rotating the button 90 deg to get the desired button dimension 

There may be some design where you need a different button shape than the recommended rectangular, like 

an oval or circular shape etc. The below steps explain how to construct the button with nonstandard shape 

from the standard Fish bone pattern.  

• First select the Fishbone pattern (Rectangular shape for oval shape and Square button for circular shape) 
from Table 27 to cover the desired button shape. 

• Then in the user interface or above the overlay print button shape with required dimension over the 

fishbone pattern as shown in Figure 122. 

Mutual capacitance buttons designed using this method have some oversensitive area or less sensitive outside 
the button shape as shown in the below figures, this could be mitigated by properly tuning the software 

thresholds of the mutual capacitance button. The below figure shows an example of a circular button made 
using a square fishbone pattern. 
 

 

Figure 122 Arbitrary shape button design based on arbitrary pattern 

If you want a pattern that is not present in Table 27, you can obtain the button parameters by following few 

steps. For example, if you want a 19x19 pattern, choose the pattern that is close to the required pattern from 
Table 27 like 17x17, and scale the air gap between Tx and Rx with respect to the button areas. For example: 

𝑁𝑒𝑤𝑔𝑎𝑝 = 𝑇𝑥𝑅𝑥𝑔𝑎𝑝 ∗ (
𝐵𝑢𝑡𝑡𝑜𝑛𝐴𝑟𝑒𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝐵𝑢𝑡𝑡𝑜𝑛𝐴𝑟𝑒𝑎𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
) 

Where, ButtonArea = X x Y dimension of the sensor. 

Compute the Tx, Rx width and Tx wall based on the assumption below and by considering the 𝑁𝑒𝑤𝑔𝑎𝑝 as 

obtained above. The obtained values of the button design parameters are shown in Table 28. Refer to the 
Figure 119 to understand the description of the button design parameters. 

𝑇𝑥𝑤𝑖𝑑𝑡ℎ = 𝑅𝑥𝑤𝑖𝑑𝑡ℎ 
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𝑇𝑥𝑤𝑎𝑙𝑙 =
𝑇𝑥𝑤𝑖𝑑𝑡ℎ

2
 

 Button parameter for 19  19 button form 17  17 button 

Button size  
(X-size,  

Y-size) 

(mm) 

Number 
of Rx-

prongs 

Air gap 

between Tx 
and Rx in 

mm 

Tx 
width in 

mm 

Rx width 

in mm 

X-wall 
width in 

mm 

Y-wall 
width in 

mm 

Y prong in 

mm 

17, 17 2 2.3 1.95 1.95 0.98 0.98 0.2 

19,19 2 2.9 1.85 1.85 0.93 0.93 0.2 

7.4.3.2.3 General recommendations on Fishbone pattern parameters 

Sensor size 

The sensor size is the XY dimension of the button, it is selected based on the board space availability, expected 
user finger size and overlay material and thickness. Sensor size selection also depends upon the number of 
required buttons on the PCB considering required button-to-button gap and space availability in the PCB. But if 

the space is not the constrain then choose higher button size which will result in getting a good SNR. Note that 
increasing the sensor size beyond a point will cause the SNR to saturate, this is because some of the electric 

field lines from Tx/Rx electrode do not interact with the finger as shown in Figure 123.  
 

 

Figure 123 Interaction of electric filed with the finger 

The SNR of the button is decreased with usage of thick overlays. Thus, the recommended minimum sensor size 

is finger size plus overlay thickness to achieve a good SNR even with thick overlays. For example, the minimum 

sensor size recommended could be 13x10 mm, considering the finger size around 10mm in diameter and 3 mm 
overlay thickness. As mentioned in the Button design for arbitrary shapes and dimensions Rx prongs should 

be perpendicular to the side with large dimension.  

Button spacing 

The button spacing is the gap between the Tx wall of two buttons. It helps to prevent user error by isolating the 
buttons from each other and reduces the cross talk. It is recommended to keep a minimum of 8mm spacing 

between the buttons this will ensure a good single touch and multi touch performance. 
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Overlay 

The overlay thickness and overlay permittivity influences the SNR of the button and immunity towards the 
external noise such as ESD. Refer to the Overlay selection section for more details. It is recommended to keep 
the overlay thickness as minimum as possible which will help in getting a higher SNR for the button and it 
should be high enough to provide immunity towards ESD noise. In some cases, if the overlay thickness is more 

and you cannot avoid it due to mechanical design consideration. In such a case, for getting a better SNR use a 
mutual capacitance button with bigger size than the recommended size. Refer to the section Sensor size for 
selecting the minimum button dimension with respect to the overlay thickness. Using an overlay material with 
higher dielectric constant will also leads to higher SNR. So always use material with high dielectric constant 
when we use thick overlay. And also, for smaller buttons better to have thin overlays for getting good SNR. 

Air gap between Tx and Rx electrode 

The gap between the Tx and Rx electrode influences the mutual capacitance between the Tx and Rx electrode. 
Increasing the gap reduces the mutual capacitance. It is the most critical parameter in the Fishbone pattern 
design and the gap between the Tx and Rx electrode such that the mutual capacitance is above 750fF. 

Number of Rx-prongs 

The number of Rx prongs influence the mutual capacitance between the Tx and Rx electrode, because 
increasing the number of Rx prongs decreases the gap between the Tx and Rx electrode for a given button size. 

Higher mutual capacitance implies higher electric field lines between Tx and Rx electrode. Thus, we get a 
higher signal when we touch the button, because the finger touch will disturb the electric field to a maximum 

extent. But higher CM also increases the impact of external noise such as VDDA ripple noise. Thus, there is a 
tradeoff in selecting the number of Rx prongs to get a higher signal verses getting good noise immunity. The 

optimal number of Rx prongs is 2 for the Fishbone pattern (i.e. Fishbone pattern with a single Tx prong and two 

Rx prongs). The below figure shows the mutual capacitance button with three and one number of Rx prongs.  
 

 

Figure 124 Mutual capacitance button with different number of prongs 

Tx electrode and Rx electrode width 

The Tx electrode and Rx electrode width influences the mutual capacitance between Tx and Rx electrode. Best 
signal response is achieved when Rx width/area is equal to Tx width/area in the case of less external noise in 
the system. The below figure shows the electric filed lines from Tx to Rx electrode with equal and unequal 
widths. Thus, from the below figure it is clear that having equal Tx and Rx width will eventually leads to higher 
change in CM for a finger touch. 
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Figure 125 Effect of Tx and Rx width 

In some cases, it is required to provide liquid tolerance to the mutual capacitance button as mentioned in 

section Liquid tolerance for mutual-capacitance sensing. To achieve that we have to use a hybrid sensing 

technique with both CSX and CSD sensing method. In such a case the Tx or Rx electrode whichever is scanned 
in CSD technique should have a significant width so that it ensures a good signal for a finger touch.  

Co planar ground  

Presence of coplanar ground decreases the impact of noise in the system and it also provides good ground 
resulting in decreased signal disparity effect. It is recommended to have as much area surrounding the sensor 
with hatched pattern and connected it to device ground. Also follow the recommendations as mentioned in the 

layout and schematics guidelines in this chapter. Ground plane reduces the coupling of electric field lines to the 

approaching finger, which decreases the change in mutual capacitance caused by a finger touch. It is suggested 
to avoid having ground plane underneath the sensor unless you expect strong coupling to a noise source 
present right below the sensor. Figure 119 shows the coplanar ground on the top and bottom layer of the PCB. 

The gap between the outer wall of the Tx electrode and the coplanar hatch ground should be greater than the 
air-gap of Tx and Rx electrodes. 

Tx wall (X-wall and Y-wall width) 

Tx wall act as a shield to the Rx electrode from noise. Wide Tx wall also reduces the effect of cross talk and the 
impact of Co-planar ground. It is recommended to keep the Tx wall width approximately equal to half of Tx 
electrode width. The below figure shows the effect of wider Tx wall, it increases the number of electric field 

lines reaching the finger from the Tx electrode by reducing the impact of Coplanar ground. The width of Tx wall 

can also be slightly increased in case Tx electrode is scanned as a CSD sensor as mentioned in section Liquid 

tolerance for mutual-capacitance sensing. An example 10x10 pattern with increased Tx wall is given in Table 
29. 
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Figure 126 Effect of width of Tx wall 

 Dimension of 10  10 button with increased Tx wall (all units in mm) 

Button Size  

(X-Size, Y-

Size) (mm) 

Number 

of Rx-

Prongs 

Air Gap 
between 
Tx and Rx 

in mm 

Tx 

Width 

in mm 

Rx 

Width in 

mm 

X-Wall 

Width 

in mm 

Y-Wall 

Width in 

mm 

Y Prong in 

mm 

10, 10 2 0.8 1.2 1.2 1.5 1.6 0.2 

7.4.4 Slider design 

Figure 127 shows the recommended slider pattern for a linear slider and Table 31 shows the recommended 

values for each of the linear slider dimensions. A detailed explanation on the recommended layout guidelines is 
provided in the following sections. 
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Figure 127 Typical linear slider pattern 
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 Linear slider dimensions 

Parameter 
Acrylic overlay 

thickness 
Minimum Maximum Recommended 

Width of the segment (W) 

1 mm  2 mm - 

8 mm1 3 mm 4 mm - 

4 mm 6 mm - 

Height of the segment (H)  - 7 mm2 15 mm 12 mm 

Air gap between segments 

(A) 
- 0.5 mm 2 mm 0.5 mm 

Air gap between the hatch 

and the slider (AHS) 
- 0.5 mm 2 mm 

Equal to overlay 

thickness 

7.4.4.1 Slider-segment shape, width, and Air gap 

A linear response of the reported finger position (that is, the centroid position) versus the actual finger position 
on a slider requires that the slider design is such that whenever a finger is placed anywhere between the middle 

of the segment SLD0 and middle of segment SLDn-1, other than the exact middle of slider segments, exactly 

two sensors report a valid signal3. If a finger is placed at the exact middle of any slider segment, the adjacent 

sensors should report a difference count = noise threshold. Therefore, it is recommended that you use a 
double-chevron shape as Figure 127 shows. This shape helps in achieving a centroid response close to the 
ideal response, as Figure 128 and Figure 129 show. For the same reason, the slider-segment width and air gap 

(dimensions “W” and “A” respectively, as marked in Figure 127) should follow the relationship mentioned in 

Equation 38. 
 

 

Figure 128 Ideal slider segment signals and centroid response 

 

                                                                    
1 The recommended slider-segment width is based on an average human finger diameter of 9 mm. See section Slider-segment shape, width, and Air gap section for more 

details. 
2 The minimum slider segment height of 7 mm is recommended based on a minimum human finger diameter of 7 mm. Slider height may be kept lower than 7 mm if the overlay 

thickness and CAPSENSE™ tuning is such that an Signal-to-noise ratio (SNR) ≥ 5:1 is achieved when the finger is placed in the middle of any segment. 
3 Here, a valid signal means that the difference count of the given slider segment is greater than or equal to the noise threshold value. 
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Figure 129 Ideal slider signals 

Equation 73. Segment width and air gap relation with the finger diameter 

𝑾 + 𝟐𝑨 = 𝒇𝒊𝒏𝒈𝒆𝒓 𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓 

Typically, an average human finger diameter is approximately 9 mm. Based on this average finger diameter and 

Equation 73, the recommended slider-segment-width and air-gap is 8 mm and 0.5 mm respectively. 

If the sum of slider-segment width and 2 * air-gap is lesser than finger diameter, as required according to 

Equation 73, the centroid response will be non-linear. This is because, in this case, a finger placed on the slider 
will add capacitance, and hence valid signal to more than two slider-segments at some given position, as 

Figure 130 shows. Thus, calculated centroid position in Equation 74 will be non-linear as Figure 131 shows. 
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Figure 130 Finger causes valid signal on more than two segments when slider segment width is lower 

than recommended 

Equation 74. Centroid algorithm used by CAPSENSE™ component in PSoC™ Creator 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (
𝑆𝑥+1 − 𝑆𝑥−1

𝑆𝑥+1 + 𝑆𝑥 + 𝑆𝑥−1
+ 𝑥) ∗

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

(𝑛 − 1)
 



  

Application Note 172 of 229 001-85951 Rev. AA  

   2021-10-01 

 

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide 
  

Design considerations 

  

Where, 

Resolution = API resolution set in the CAPSENSE™ component customizer 

n = Number of sensor elements in the CAPSENSE™ component customizer 

𝑥 = Index of element which gives maximum signal 

𝑆𝑖 = Different counts (with subtracted noise threshold value) of the slider segment 

 
 

 

Figure 131 Nonlinear centroid response when slider segment width is lower than recommended 

Note that even though a slider-segment-width value of less than finger diameter – 2 * air-gap provides a non-
linear centroid response, as Figure 131 shows; it may still be used in an end application where the linearity of 

reported centroid versus actual finger position does not play a significant role. However, a minimum value of 
slider-segment-width must be maintained, based on overlay thickness, such that, at any position on the 
effective slider length, at least one slider-segment provides a Signal-to-noise ratio (SNR) of ≥ 5:1 (that is signal 

greater than or equal to the finger threshold parameter) at that position. If the slider-segment width is too low, 
a finger may not be able to couple enough capacitance, and therefore, none of the slider-segments will have a 

5:1 SNR, resulting in a reported centroid value of 0xFFFF1 in PSoC™ Creator as Figure 132 shows, and 0x00002 in 

ModusToolbox™. 

 

                                                                    
1 The CAPSENSE™ Component in PSoC™ Creator reports a centroid of 0xFFFF when there is no finger detected on the slider, or when none of the slider segments reports a 

difference count value greater than the Finger Threshold parameter. 
2 The CAPSENSE™ middleware in ModusToolbox™ reports a centroid of 0x0000 when there is no finger detected on the slider, or when none of the slider segments reports a 

difference count value greater than the Finger Threshold parameter. 
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Figure 132 Incorrect centroid reported when slider-segment-width is too low 

The minimum value of slider-segment width for certain overlay thickness values for an acrylic overlay are 
provided in Table 31. For thickness values of acrylic overlays, which are not specified in Table 31, Figure 133 

may be used to estimate the minimum slider-segment width. Very thin overlay or no overlay may cause a 
nonlinear centroid response due to saturation of raw count or due to high finger capacitance; centroid position 

may be detected before touching the slider. In these conditions, the CAPSENSE™ centroid algorithm will not be 

able to correctly estimate the finger position on the slider using Equation 74. It is recommended to have the 

overlay thickness for the CSD sensor as mentioned in Table 30. 
 

 
Figure 133 Minimum slider-segment width w.r.t. overlay thickness for an acrylic overlay 

If the slider-segment-width + 2 * air-gap is higher than the finger diameter  value as required in Equation 73, 
the centroid response will have flat-spots; that is, if the finger is moved towards the middle of any segment, the 
reported centroid position will remain constant as Figure 134 shows. This is because, as Figure 135 shows, 

when the finger is placed in the middle of a slider segment, it will add a valid signal only to that segment even if 
the finger is moved a little towards adjacent segments.  
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Figure 134 Flat-spots (nonresponsive centroid) when slider-segment width is higher than 

recommended 
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Figure 135 Signal on slider segments when slider-segment width is higher than recommended 

Note that if the value of slider-segment-width + 2 * air-gap is higher than the finger diameter, it may be possible 

to increase and adjust the sensitivity of all slider segments such that even if the finger is placed in the middle of 
a slider segment, adjacent sensors report a difference count value equal to the noise threshold value (see 

Figure 128); however, this will result in the hover effect – the slider may report a centroid position even if the 

finger is hovering above the slider and not touching the slider.  

7.4.4.2 Dummy segments at the ends of a slider 

In a CAPSENSE™ design, when one segment is scanned, adjacent segments are connected to either ground or 
to the driven- shield signal based on the option specified in the “Inactive sensor connection” parameter in the 

CAPSENSE™ CSD Component. For a linear centroid response, the slider requires all the segments to have the 
same sensitivity, that is, the increase in the raw count (signal) when a finger is placed on the slider segment 

should be the same for all segments. To maintain a uniform signal level from all slider segments, it is 
recommended that you physically connect the two segments at both ends of a slider to either ground or driven 
shield signal. The connection to ground or to the driven-shield signal depends on the value specified in the 

“Inactive sensor connection” parameter. Therefore, if your application requires an ‘n’ segment slider, it is 

recommended that you create n + 2 physical segments, as Figure 127 shows.  
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If it is not possible to have two segments at both ends of a slider due to space constraints, you can implement 
these segments in the top hatch fill, as Figure 136 shows. Also, if the total available space is still constrained, 

the width of these segments may be kept lesser than the width of segments SLD0 through SLDn-1, or these 
dummy segments may even be removed.  

If the two segments at the both ends of a slider are connected to the top hatch fill, you should connect the top 

hatch fill to the signal specified in the “Inactive sensor connection” parameter. If liquid tolerance is required for 
the slider, the hatch fill around the slider, the last two segments, and the inactive slider segments should be 
connected to the driven-shield signal. See the Effect of liquid droplets and liquid stream on a self-
capacitance sensor section for more details. 
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Figure 136 Linear slider pattern when first and last segments are connected to top hatch fill 

7.4.4.3 Deciding slider dimensions 

Slider dimensions for a given design can be chosen based on following considerations: 

a) Decide the required length of the slider (L) based on application requirements. This is same as the “effective 

slider length” as Figure 127 shows.  

b) Decide the height of the segment based on the available space on the board. Use the maximum allowed 
segment height (15 mm) if the board space permits; if not, use a lesser height but ensure that the height is 

greater than the minimum specified in Table 31.  

c) The slider-segment width and the air gap between slider segments should be as recommended in Table 31. 

The recommended slider-segment-width and air-gap for an average finger diameter of 9 mm is 8 mm and 0.5 
mm respectively.  

d) For a given slider length L, calculate the number of segments required by using the following formula: 

Equation 75. Number of segments required for a slider 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 =
𝑠𝑙𝑖𝑑𝑒𝑟 𝑙𝑒𝑛𝑔𝑡ℎ

𝑠𝑙𝑖𝑑𝑒𝑟 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑤𝑖𝑑𝑡ℎ + 𝑎𝑖𝑟 𝑔𝑎𝑝
+ 1 

Note that a minimum of two slider segments are required to implement a slider. 

If the available number of CAPSENSE™ pins is slightly less than the number of segments calculated for a certain 

application, you may increase the segment width to achieve the required slider length with the available 

number of pins. For example, a 10.2-cm slider requires 13 segments. However, if only 10 pins are available, the 
segment width may be increased to 10.6 cm. This will either result in a nonlinear response as Figure 134 shows, 
or a hover effect; however, this layout may be used if the end application does not need a high linearity. 

Note that the PCB length is higher than the required slider length as Figure 127 shows. PCB length can be 
related to the slider length as shown in Equation 76. 

 



  

Application Note 176 of 229 001-85951 Rev. AA  

   2021-10-01 

 

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide 
  

Design considerations 

  

Equation 76. Relationship between minimum PCB length and slider length 

𝐏𝐂𝐁 𝐥𝐞𝐧𝐠𝐭𝐡 = 𝐒𝐥𝐢𝐝𝐞𝐫 𝐥𝐞𝐧𝐠𝐭𝐡 + 𝟑 ∗ 𝐬𝐥𝐢𝐝𝐞𝐫 𝐬𝐞𝐠𝐦𝐞𝐧𝐭 𝐰𝐢𝐝𝐭𝐡 + 𝟐 ∗ 𝐚𝐢𝐫 𝐠𝐚𝐩 

If the available PCB area is less than that required per this equation, you can remove the dummy segments.  

In this case, the minimum PCB length required will be as shown in Equation 77. 

Equation 77. Relationship between minimum PCB length and slider length 

𝐏𝐂𝐁 𝐥𝐞𝐧𝐠𝐭𝐡 = 𝐒𝐥𝐢𝐝𝐞𝐫 𝐥𝐞𝐧𝐠𝐭𝐡 + 𝐒𝐥𝐢𝐝𝐞𝐫 𝐬𝐞𝐠𝐦𝐞𝐧𝐭 𝐰𝐢𝐝𝐭𝐡 

7.4.4.4 Routing slider segment trace 

A slider has many segments, each of which is connected separately to the CAPSENSE™ input pin of the device. 
Each segment is separately scanned and the centroid algorithm is applied finally on the signal values of all the 

segments to calculate the centroid position. The SmartSense algorithm implements a specific tuning method 
for sliders to avoid nonlinearity in the centroid that could occur due to the difference of CP in the segments. 
However, the following layout conditions need to be met for the slider to work: 

1. CP of any segment should always be within the supported range of CP as mentioned in the Component 

datasheet.  

2. CP of the slider segment should be as close as possible. However, in the practical scenario CP of each slider 

segment might vary because of differences in trace routing for each segment.  The maximum allowed 

variation in the segment parasitic capacitance is 44% max CP of the slider segment for an 85% IDAC 
calibration level. If the variation in CP is beyond this limit then it may cause a change in the sensitivity 
among the slider segments leading to a non-linear slider response. 

Implement the following layout design rules to meet a good slider design with linear response.  

• Design the shape of all segments to be as uniform as possible. 

• Ensure that the length and the width of the traces connecting the segments to the device are same for all 

the segments if possible. 

• Maintain the same air gap between the sensors or traces to ground plane or hatch fill. 

7.4.4.5 Slider design with LEDs 

In some applications, it may be required to display the finger position by driving LEDs. You can either place the 
LEDs just above the slider segments or drill a hole in the middle of a slider segment for LED backlighting, as 
Figure 137 shows. When a hole is drilled for placing an LED, the effective area of the slider segment reduces. To 

achieve an SNR > 5:1, you need to have a slider segment with a width larger than the LED hole size. See Table 

31 for the minimum slider width required to achieve an SNR > 5:1 for a given overlay thickness. Follow the 

guidelines provided in the Crosstalk solutions section to route the LED traces.  
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Figure 137 Slider design with LED backlighting 

http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
http://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense-csd
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7.4.5 Sensor and device placement 

Follow these guidelines while placing the sensor and the device in your PCB design: 

• Minimize the trace length from the device pins to the sensor pad. 

• Mount series resistors within 10 mm of the device pins to reduce RF interference and provide ESD 
protection. See Series resistors on CAPSENSE™ pins for details. 

• Mount the device and the other components on the bottom layer of the PCB. 

• Avoid connectors between the sensor and the device pins because connectors increase CP and noise pickup. 

• Button to Button distance (edge to edge) must be greater than 8mm. If keys have less than 8mm between 
them, there will be cross talk between the keys.  Also, from a usability standpoint, it increases the risk of the 

user touching two keys at the same time. Key to key distance must be greater than 8mm 

• Spacing from a touch line to any metal should be greater than 5mm.  This includes the metal chassis, 
decorative chrome trim, screws, and so on. 

• Isolate or provide physical separation between CAPSENSE™ components and their signals from noisy 
subsystems such as transformers. A CAPSENSE™ system in general is sensitive to external noise.  

7.4.6 Trace length and width 

Use short and narrow PCB traces to minimize the parasitic capacitance of the sensor. The maximum 
recommended trace length is 12 inches (300 mm) for a standard PCB and 2 inches (50 mm) for flex circuits. The 

maximum recommended trace width is 7 mil (0.18 mm). You should surround the CAPSENSE™ traces with a 

hatched ground or hatched shield with trace-to-hatch clearance of 10 mil to 20 mil (0.25 mm to 0.51 mm). 

7.4.7 Trace routing 

You should route the sensor traces on the bottom layer of the PCB, so that the finger does not interact with the 

traces. Do not route traces directly under any sensor pad unless the trace is connected to that sensor. 

Do not run capacitive sensing traces closer than 0.25 mm to switching signals or communication lines. 

Increasing the distance between the sensing traces and other signals increases the noise immunity. If it is 

necessary to cross communication lines with sensor pins, make sure that the intersection is at right angles, as 
Figure 138 shows. 
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Figure 138 Routing of sensor and communication lines 
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If, due to spacing constraints, sensor traces run in parallel with high-speed traces such as I2C communication 
lines or Bluetooth® LE antenna traces, it is recommended to place a ground trace between the sensor trace and 

the high-speed trace as shown in Figure 139. This guideline also applies to the cross talk caused by 
CAPSENSE™ sensor trace with precision analog trace such as traces from temperature sensor to the 

PSoC™ device. The thickness of the ground trace can be 7 mils and the spacing from sensor trace to ground 
trace should be equal to minimum of 10 mils to reduce the CP of the CAPSENSE™ sensor.  
 

PSoC 

High Speed Switching Trace

Ground Trace to Reduce Cross 
Coupling

CAPSENSE  Sensor Traces

Switching Trace Running in Parallel with CAPSENSE  Trace

 

Figure 139 Reducing cross talk between high-speed switching trace and CAPSENSE™ trace 

If a ground trace cannot be placed in between the switching trace and the CAPSENSE™ trace, the 3W rule can be 
followed to reduce the cross talk between the traces. The 3W rule states that “to reduce cross talk from 

adjacent traces, a minimum spacing of two trace widths should be maintained from edge to edge” as shown in 

Figure 140.  
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Figure 140 3W trace spacing to minimize cross talk 

• Do not run Tx and Rx lines parallel to each other. The trace routing should be separated as much as 

possible. 

• If the layout constraints require Tx and Rx run parallel for short distances, the space between Tx and Rx 
should be greater than the distance between Tx and Rx inside the key (2 times the Tx-Rx key spacing is 
preferred) or add ground between them.  

• Keep as much clearance around Rx as possible to prevent noise on the touch keys.  It is critical to follow this 
guideline for spacing to power traces and LED lines (high speed switching, power). Ground should also 

follow this rule, but it is less critical.  Ground will provide noise protection but will reduce key sensitivity. 
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• For a given set of sensors, the number of Rx lines must be less than or equal to Tx lines. Rx lines are 
susceptible to noise, whereas Tx lines are relatively less susceptible. 

7.4.8 Crosstalk solutions 

A common backlighting technique for panels is an LED mounted under the sensor pad so that it is visible 
through a hole in the middle of the sensor pad. When the LED is switched ON or OFF, voltage transitions on the 
LED trace can create crosstalk in the capacitive sensor input, creating noisy sensor data. To prevent this 
crosstalk, isolate CAPSENSE™ and the LED traces from one another as Trace routing section explains.  

You can also reduce crosstalk by removing the rapid transitions in the LED drive voltage, by using a filter as 
Figure 141 shows. Design the filter based on the required LED response speed. 
 

VDDD                                 
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Figure 141 Reducing crosstalk 

A guard trace is a ground trace running close to or above/below a TX/Rx line of a mutual-capacitance button.  

Guard traces can be used to protect sensor traces from noise if the layout does not allow for a ground hatch.  

Similar to ground hatch, guard traces add parasitic capacitance and reduce button sensitivity.  Guard traces are 

usually needed on a case-by-case basis. Typical situations where guard traces have been used in the past 

include: 

• Reduce cross talk 

• Protect from noise of high-speed lines (I2C, SPI, UART) and toggling LED traces. 

• Border around the HMI or around an LCD 

7.4.9 Vias 

Use the minimum number of vias possible to route CAPSENSE™ signals, to minimize parasitic capacitance. 
Place the vias on the edge of the sensor pad to reduce trace length, as Figure 142 shows. 
 

Via at the Center of the 

Sensor (Long Trace)

Via Near the Edge of the 

Sensor (Short Trace)  

Figure 142 Via placement on the sensor pad 
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7.4.10 Ground plane 

When designing the ground plane, follow these guidelines: 

• Ground surrounding the sensors should be in a hatch pattern. If you are using ground or driven-shield 
planes in both top and bottom layers of the PCB, you should use a 25 percent hatching on the top layer (7-
mil line, 45-mil spacing), and 17 percent on the bottom layer (7-mil line, 70-mil spacing).  

• For the other parts of the board not related to CAPSENSE™, solid ground should be present as much as 
possible. 

• The ground planes on different layers should be stitched together as much as possible, depending on the 
PCB manufacturing costs. Higher amount of stitching results in lower ground inductance, and brings the 

chip ground closer to the supply ground. This is important especially when there is high current sinking 

through the ground, such as when the radio is operational.  

• Every ground plane used for CAPSENSE™ should be star-connected to a central point, and this central point 

should be the sole return path to the supply ground. Specifically: 

− The hatch ground for all sensors must terminate at the central point 

− The ground plane for CMOD, CINTX must terminate at the central point 

− The ground plane for CSH_TANK must terminate at the central point 

Figure 143 explains the star connection. The central point for different families is mentioned in Table 32. 
 

 

Figure 143 Star connection for Ground 

 Central point for star connection 

Family Central point 

PSoC™ 4000 VSS pin 

PSoC™ 4100/4100M VSS pin 

PSoC™ 4200/4200M/4200L/PSoC™ 4-S/PSoC™ 4100PS VSS pin 

PSoC™ 4100-BL E-pad 

PSoC™ 4200-BL E-pad 

 

• All the ground planes for CAPSENSE™ should have an inductance of less than 0.2 nH from the central point. 
To achieve this, place the CMOD, CINTx, and CSH_TANK capacitor pads close to the chip, and keep their ground 
planes thick enough. 

Sensor Ground 

C
MOD

 Ground 

C
SH_TANK

 Ground 

Central Point Supply Ground 
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7.4.10.1 Using packages without E-pad 

When not using the E-pad, the VSS pin should be the central point and the sole return path to the supply 
ground. High-level layout diagrams of the top and bottom layers of a board when using a chip without the E-

pad are shown in Figure 144 and Figure 145. 
  

 

Figure 144 PCB top layer layout using a chip without E-pad 

  

 

Figure 145 PCB bottom layer layout using a chip without E-pad 
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7.4.10.2 Using packages with E-pad 

If you are using packages with E-pad, the following guidelines must be followed: 

• The E-pad must be the central point and the sole return path to the supply ground. 

• The E-pad must have vias underneath to connect to the next layers for additional grounding. Generally 
unfilled vias are used in a design for cost purposes, but silver-epoxy filled vias are recommended for the 

best performance as they result in the lowest inductance in the ground path. 

7.4.10.3 Using PSoC™ 4 Bluetooth® LE devices 

In the case of PSoC™ 4 Bluetooth® LE devices in the QFN package (with E-pad): 

• The general guidelines of ground plane (discussed above) apply. 

• The E-pad usage guidelines of Using packages with E-pad apply. 

• The VSSA pin should be connected to the E-pad below the chip itself. 

• The vias underneath the E-pad are recommended to be 5 x 5 vias of 10-mil size. 

High-level layout diagrams of the top and bottom layers of a board when using PSoC™ 4 Bluetooth® LE chips 

are shown in Figure 146 and Figure 147. 
 

 

Figure 146 PCB top layer layout with PSoC™ 4 Bluetooth® LE (with E-pad) 
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Figure 147 PCB bottom layer layout with PSoC™ 4 Bluetooth® LE (with E-pad) 

7.4.11 Power supply layout recommendations 

CAPSENSE™ is a high-sensitivity analog system. Therefore, a poor PCB layout introduces noise in high-
sensitivity sensor configurations such as proximity sensors and buttons with thick overlays (>1 mm). To achieve 

low noise in a high-sensitivity CAPSENSE™ design, the PCB layout should have decoupling capacitors on the 

power lines, as listed in Table 33. 

 Decoupling capacitors on power lines 

Power 

line 

Decoupling 

capacitors 

Corresponding 
ground 

terminal 

Applicable device family 

VDD 0.1 µF and 1 µF VSS PSoC™ 4000 

VDDIO 0.1 µF and 1 µF VSS PSoC™ 4000, PSoC™ 6 MCU 

VDDD 

0.1 µF and 1 µF VSS PSoC™ 4100, PSoC™ 4200, PSoC™ 6 MCU 

0.1 µF and 1 µF VSSD 
PSoC™ 4100-BL, PSoC™ 4200-BL, PSoC™ 4200L, PSoC™ S-

series, PSoC™ 4100S Plus, PSoC™ 4100S Max 

VDDA1 

0.1 µF and 1 µF 
(Battery powered 

supply) 

VSSA 
PSoC™ 4100, PSoC™ 4200, PSoC™ 4100-BL, PSoC™ 4200-
BL, PSoC™ 4200L, PSoC™ 4S-Series, PSoC™ 4100S Plus, 

PSoC™ 4100PS, PSoC™ 6 MCU 

0.1µF and 10 µF 
(Mains Powered 

supply) 

VSSA PSoC™ 4S-series, PSoC™ 4100S Plus, PSoC™ 4100PS 

VDDR 0.1 µF and 1 µF VSSD 
PSoC™ 4100-BL, PSoC™ 4200-BL, PSoC™ 6 MCU with 

Bluetooth® LE Connectivity 

                                                                    
1 The VDDA pin on PSoC™ 4 S-Series, PSoC™ 4100S Plus, and PSoC™ 4100PS family requires different values of bulk capacitor depending on the power supply source. If the device 

is battery powered, it is recommended to use 0.1-µF and 1-µF capacitors in parallel and if the device is mains powered, it is recommended to use 0.1 µF and 10 µF in parallel. 

This is to improve the power supply rejection ratio of reference generator (REFGEN) used in the CAPSENSE™ block. 
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Power 

line 

Decoupling 

capacitors 

Corresponding 
ground 

terminal 

Applicable device family 

VCCD 
See device 

datasheet 

VSS 
(PSoC™ 4000) 
or VSSD (all 

others) 

All device families 

The decoupling capacitors and CMOD capacitor must be placed as close to the chip as possible to keep ground 
impedance and supply trace length as low as possible.  

For further details on bypass capacitors, see the Power section in the Device datasheet. 

7.4.12 Layout guidelines for liquid tolerance 

As explained in the Liquid tolerance section, by implementing a shield electrode and a guard sensor, a liquid-
tolerant CAPSENSE™ system can be implemented. If there are multiple CSD blocks in the device, each CSD 

block should have a dedicated shield electrode. This section shows how to implement a shield electrode and a 

guard sensor.  

7.4.12.1 Layout guidelines for shield electrode 

The area of the shield electrode depends on the size of the liquid droplet and the area available on the board 

for implementing the shield electrode. The shield electrode should surround the sensor pads and traces, and 
spread no further than 1 cm from these features. Spreading the shield electrode beyond 1 cm has negligible 
effect on system performance.  

Also, having a large shield electrode may increase radiated emissions. If the board area is very large, the area 
outside the 1-cm shield electrode should be left empty, as Figure 148 shows. The board design should focus on 

reducing the coupling capacitance between the liquid droplet and ground. Thus, for improved liquid tolerance, 

there should not be any hatch fill or a trace connected to ground in the top and bottom layers of the PCB.  

When there is a grounded hatch fill or a trace then, when a liquid droplet falls on the touch surface, it may 
cause sensor false triggers. Even if there is a shield electrode between the sensor and ground, the effect of the 
shield electrode will be totally masked out and sensors may false trigger.  

In some applications, there may not be sufficient area available on the PCB for shield electrode 

implementation. In such cases, the shield electrode can spread less than 1 cm; the minimum area for shield 
electrode can be the area remaining on the board after implementing the sensor.  

In some applications, the capacitance of the shield electrode will be very high; you can reduce it with the 

following techniques: 

• Using multiple shield electrode instead of single shield electrode: If there is a single hatch pattern with a 
higher CP, split the hatch pattern into multiple hatch patterns and drive it with the shield signal to decrease 

the shield CP. This will also allow the use of a higher range of sense clock frequencies for the sensors which 
will improve the sensitivity of the CAPSENSE™ system. In a complex layout design, this approach will make 

trace routing simple. 

• Connecting multiple shield pins to the same electrode: If splitting the shield electrode in the layout is not 

feasible, connect multiple shield pins to the same electrode. This will make all the series resistance of the 
sensor pins in parallel and reduce the effective time constant of the shield electrode, which will allow using 
a higher range of sense clock frequencies for sensors, which will improve the sensitivity of the CAPSENSE™ 
system. 
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PCB – Top Layer

BTN1 BTN2

1 cm Shield 

Electrode

1 cm Shield 

Electrode

 

Figure 148 Shield electrode placement when sensor trace Is routed in top and bottom layer 

Follow these guidelines to implement the shield electrode in two-layer and four-layer PCBs:  

Two-layer PCB: 

• Top layer: Hatch fill with 7-mil trace and 45-mil grid (25 percent fill). Hatch fill should be connected to the 

driven-shield signal. 

• Bottom layer: Hatch fill with 7-mil trace and 70-mil grid (17 percent fill). Hatch fill should be connected to 

the driven-shield signal. 

Four (or more)-layer PCB: 

• Top layer: Hatch fill with 7-mil trace and 45-mil grid (25 percent fill). Hatch fill should be connected to the 

driven-shield signal. 

• Layer-2: Hatch fill with 7-mil trace and 70-mil grid (17 percent fill). Hatch fill should be connected to the 

driven-shield signal. 

• Layer-3: VDD Plane 

• Bottom layer: Hatch fill with 7-mil trace and 70-mil grid (17 percent fill). Hatch fill should be connected to 
ground. 

The recommended air gap between the sensor and the shield electrode is 1 mm.  
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7.4.12.2 Layout guidelines for guard sensor 

As explained in the Guard sensor section, the guard sensor is a copper trace that surrounds all sensors, as 
Figure 149 shows.  
 

BTN1 BTN2 BTN3 Shield Electrode

Guard Sensor

Button Sensor
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Figure 149 PCB layout with shield electrode and guard sensor 

The guard sensor should be triggered only when there is a liquid stream on the touch surface. Ensure that the 

shield electrode pattern surrounds the guard sensor to prevent it from turning on due to liquid droplets. The 

guard sensor should be placed such that it meets the following conditions: 

• It should be the first sensor to turn on when there is a liquid stream on the touch surface. To accomplish 
this, the guard sensor is usually placed such that it surrounds all sensors. 

• It should not be accidentally touched while pressing a button or slider sensor. Otherwise, the button 
sensors and slider sensor scanning will be disabled and the CAPSENSE™ system will become nonoperational 

until the guard sensor is turned off. To ensure the guard sensor is not accidentally triggered, place the guard 
sensor at a distance greater than 1 cm from the sensors. 

Follow these guidelines to implement the guard sensor: 

• The guard sensor should be in the shape of a rectangle with curved edges and should surround all the 
sensors.  

• The recommended thickness for a guard sensor is 2 mm.  

• The recommended clearance between the guard sensor and the shield electrode is 1 mm. 

If there is no space on the PCB for implementing a guard sensor, the guard sensor functionality can be 
implemented in the firmware. For example, you can use the ON/OFF status of different sensors to detect a 

liquid stream depending on the use case data. 

The following conditions can be used to detect a liquid stream on the touch surface: 

• When there is a liquid stream, more than one button sensor will be active at a time. If your design does not 

require multi-touch sensing, you can detect this and reject the sensor status of all the button sensors to 
prevent false triggering. 

• In a slider, if the slider segments which are turned ON are not adjacent segments, you can reset the slider 
segments status or reject the slider centroid value that is calculated. 
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• A firmware algorithm to detect the false touch due to water drop from the use case data can be made to 
improve the false touch rejection capability sensors. 

7.4.12.3 Liquid tolerance with ground ring 

In some applications, it is required to have a ground ring (solid trace or a hatch fill) around the periphery of the 
board for improved ESD and EMI/EMC performance, as shown in Figure 150. Having a ground ring around the 
board may result in sensor false triggers when liquid droplets fall in between the sensor and the ground sensor. 
Therefore, it is recommended not to have any ground in the top layer. If the design must have a ground ring in 

the top layer, use a ground ring with the minimum thickness (8 mils). 
 

Hatch Pattern 

Connected to Shield

Button Sensor

Ground Ring 

for Improved 

EMI/EMC

GUARD

BTN1 BTN2 BTN3

 

Figure 150 CAPSENSE™ design with ground ring for improved ESD and EMI/EMC performance 

7.4.13 Schematic rule checklist 

Table 34 provides the checklist to verify your CAPSENSE™ schematic. 

 Schematic Rule Checklist 

No. Category Recommendations/Remarks 

1 CMOD 2.2 nF. See Table 35 for pin selection.  

2 CSH_TANK 

10 nF if shield electrode is being used, NA otherwise. See Driven-shield 

signal and shield electrode and CAPSENSE™ CSD shielding for details on 

shield electrode and use of CSH_TANK respectively. 

See Table 35 for pin selection.  

3 CINTA/CINTB 470 pF. See Table 35 for pin selection. 

3 
Series resistance on 

input lines 

560 Ω for Self-capacitance and 2 kΩ for mutual-capacitance. See Series 

resistors on CAPSENSE™ pins for details. 

4 
Sensor pin 

selection 

If possible, avoid pins that are close to the GPIOs carrying 
switching/communication signals. Physically separate DC loads such as LEDs 
and I2C pins from the CAPSENSE™ pins by a full port wherever possible. See 

Sensor pin selection section for more details. 

5 
GPIO Source/Sink 

Current 

Ensure that the total sink current through GPIOs is not greater than 40 mA 

when the CAPSENSE™ block is scanning the sensors. 
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7.4.13.1 External capacitors pin selection 

As explained in the CAPSENSE™  fundamentals section, CAPSENSE™ require external capacitors - CMOD (CSD 
sensing method), CTANK (Only when Shield is implemented), and CINTX (CSX sensing method) for reliable 

operation. Starting from PSoC™ Creator 3.3 SP2, the number of pins that can support CMOD and CSH_TANK is 
increased to improve design flexibility. Table 35 lists the recommended pins for CMOD, CINTX and CSH_TANK 

capacitors for PSoC™ Creator 3.3 SP2 or later versions. 

Note: For PSoC™ 4100/PSoC™ 4200, if a pin other than P4[2] is selected for CMOD, P4[2] will not be 

available for any other function. For example, if you try routing CMOD to P2[0] in PSoC™ Creator for a 

PSoC™ 4200 device, it uses both P2[0] and P4[2]. 

 Recommended pins for external capacitors 

Device 
CMOD (or CMOD1 for Fifth-

Generation CAPSENSE™) 

CSH_TANK (or CMOD2 for Fifth-

Generation CAPSENSE™) 

PSoC™ 4000 P0[4] P0[2] 

PSoC™ 4100/PSoC™ 4200 P4[2] P4[3] 

PSoC™ 4200M/ PSoC™ 4200L 
CSD0: P4[2] CSD0: P4[3] 

CSD1: P5[0] CSD1: P5[1] 

PSoC™ 4 Bluetooth® LE P4[0] P4[1] 

PSoC™ 6 MCU P7[1]  P7[2] 

PSoC™ 4S-Series, PSoC™ 4100S Plus P4[2] P4[3] 

PSoC™ 4100PS P5[2] P5[3] 

PSoC™ 4100S Max 
Channel0: P4[0] Channel0: P4[1] 

Channel1: P7[0] Channel1: P7[1] 

 Supported pins for external capacitors  

Device 
CMOD (or CMOD1 for 
fifth-generation 

CAPSENSE™) 

CSH_TANK (or CMOD2 for 
fifth-generation 

CAPSENSE™) 

CINTA CINTB 

PSoC™ 4000 
Port0[0:7], Port1 [0:7] 

P2[0] 

Port0 [0:7], Port1 [0:7] 

P2[0] 
P0[4] P0[2] 

PSoC™ 4100 

Port0 [0:7], Port1 [0:7] 
Port2 [0:7], Port3 [0:7] 

P4[2] 

Port0 [0:7], Port1 [0:7] 
Port2 [0:7], Port3 [0:7] 

P4[3] 

Not supported Not supported 

PSoC™ 4200 

Port0 [0:7], Port1 [0:7] 

Port2 [0:7], Port3 [0:7] 

P4[2] 

Port0 [0:7], Port1 [0:7], 

Port2 [0:7], Port3 [0:7] 

P4[3] 

Port0 [0:7], Port1 
[0:7] 
Port2 [0:7], Port3 

[0:7] 

Port0 [0:7], Port1 
[0:7] 
Port2 [0:7], Port3 

[0:7] 

PSoC™ 4200M 

CSD0:  

Port0 [0:7], Port1 [0:7] 
Port2 [0:7], Port3 [0:7]  

Port4 [0:6], Port6 [0:5] 

Port7 [0:1] 

CSD0: 

Port0 [0:7], Port1 [0:7] 
Port2 [0:7], Port3 [0:7],              

Port4 [0:6], Port6 [0:5]              

Port7 [0:1] 

CSD0: P4[2] CSD0: P4[3] 

http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
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Device 
CMOD (or CMOD1 for 
fifth-generation 

CAPSENSE™) 

CSH_TANK (or CMOD2 for 
fifth-generation 

CAPSENSE™) 

CINTA CINTB 

CSD1: Not supported CSD1: Not supported 
CSD1: Not 

supported 

CSD1: Not 

supported 

PSoC™ 4200L 

CSD0:  

Port0 [0:7], Port1 [0:7]              
Port2 [0:7], Port3 [0:7]              

Port4 [0:6], Port6 [0:5]              

Port7 [0:7], Port10 

[0:7], Port11 [0:7] 

CSD0: 

Port0 [0:7], Port1 [0:7]              
Port2 [0:7], Port3 [0:7]              

Port4 [0:6], Port6 [0:5]             

Port7 [0:7], Port10 [0:7]              

Port11 [0:7] 

CSD0: P4[2]  CSD0: P4[3]  

CSD1: 

Port5 [0:7], Port8 [0:7]              

Port9 [0:7] 

CSD1: 

Port5 [0:7], Port8 [0:7]              

Port9 [0:7] 

CSD1: P5[0] CSD1: P5[1] 

PSoC™ 4 

Bluetooth® LE 

Port0 [0:7], Port1 [0:7] 

Port2 [0:7], Port3 [0:7] 
Port4 [0:1], Port5 [0:1] 

Port6 [0:1] 

Port0 [0:7], Port1 [0:7] 

Port2 [0:7], Port3 [0:7] 
Port4 [0:1], Port5 [0:1] 

Port6 [0:1] 

P4[0] P4[1] 

PSoC™ 6 MCU 
P7[1] or P7[2] or      

P7[7] 
P7[1] or P7[2] or P7[7] P7[1] P7[2] 

PSoC™ 4S-
Series, 

PSoC™ 4100S 

Plus 

P4[2], P4[3], P4[1] P4[2], P4[3], P4[1] P4[2] P4[3] 

PSoC™ 4100PS P5[0], P5[2], P5[3] P5[0], P5[2], P5[3] P5[2] P5[3] 

PSoC™ 4100S 

Max 

Channel0: P4[0], P4[2] Channel0: P4[1], P4[3] 
Not applicable Not applicable 

Channel1: P7[0], P5[1] Channel1: P7[1], P5[2] 

7.4.13.2 Sensor pin selection 

As explained in CAPSENSE™  fundamentals, PSoC™ supports CSD and CSX capacitive sensing methods. Each 
CSD sensor requires a single sensor pin and CSX sensor will require two sensor pins for Tx and Rx electrode in 
addition to the required external capacitors for each sensing technique.  

The selection of the sensor pins should be in a way such that the CAPSENSE™ sensor traces and communication 
or other toggling GPIO traces are isolated by proper port/pin assignment. The following are some 

recommended guidelines: 

• Isolate switching signals, such as PWM, I2C communication lines, and LEDs from the sensor and sensor 

traces. Place them at least 4 mm apart and fill a hatched ground between the CAPSENSE™ traces and the 
switching signals to avoid crosstalk. 

• Distribute the placement of DC loads on different ports to reduce the noise in CAPSENSE™. It is 
recommended to have digital I/Os spread on different ports rather than concentrating in a single port.  

• While the CAPSENSE™ block is scanning the sensor, limit the total source or sink current through GPIOs to 

less than 40 mA while the CAPSENSE™ block is scanning the sensor. Sinking a current greater than 40 mA 

while the CAPSENSE™ sensor is scanning may result in excessive noise in the sensor raw count.  
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• For a PSoC™ 4 device it is recommended to place all the digital DC loads like LEDs, I2C/UART 
communication pins on the port powered by only VSSD; see the Device datasheet for determining the ports 

that are powered by VSSD. Placing DC loads on ports powered by VSSA will shift the VSSA up. Since 
CAPSENSE™ is powered by VSSA, it will affect its performance. 

• For PSoC™ 6 family of devices:  

− Table 37 lists the ports that support CAPSENSE™, selecting ports 5, 6, 7, and 8 for CAPSENSE™ ensures 

lesser noise. 

− It is recommended to place all digital switching pins such as LEDs, I2C, UART, SPI, SMIF communication 

pins on the ports that are powered by a different power supply domain which is not shared with the 
CAPSENSE™ ports. Table 38 lists the ports, their supply domains, and recommendations for using these 
ports with CAPSENSE™. For more details, see the Errata section of the Device datasheet. A deviation 

from these guidelines might cause a noise due to level shift in raw count. For more details, see Raw 

counts show a level-shift or increased noise when GPIOs are toggled. To isolate the supply domains 

further, it is better to externally isolate them using ferrite beads as shown in Figure 152. 

 CAPSENSE™ capable ports in PSoC™ 6 devices 

Device CAPSENSE™ capable ports 

CY8C62x6, CY8C62x7 P0, P1, P2, P4, P5, P6, P7, P8, P9, P10, P11 

CY8C63x6, CY8C63x7 P0, P1, P2, P4, P5, P6, P7, P8, P9, P10, P11 

CY8C62x5 P7.0 to P7.7, P8.0 to P8.3, P9.0 to P9.3 

 

 Recommendations of port usage with CAPSENSE™ for PSoC™ 6 device 

Ports Supply domain 
Recommended for 

CAPSENSE™ 

Recommendations for GPIOs if used 

for communication, LEDs, and other 
high frequency functionality with 

CAPSENSE™ 

P0 VBACKUP No* Switching frequency < 8MHz 

P1 VDDD No* Switching frequency < 1MHz, SLOW 

Slew Rate  

P2, P3, P4 VDDIO2 No* Switching frequency < 25MHz 

P5, P6, P7, P8 VDDIO1 Yes Not recommended 

P9, P10 VDDIOA No* Switching frequency < 1MHz, SLOW 

Slew Rate 

P11, P12, P13 VDDIO0 No* Switching frequency < 80MHz 

P14 VDDUSB No* NA 

Note: * If you need additional CAPSENSE™ pins and if you must use GPIOs in ports P1, P9, and P10 as Tx 
electrode for CSX sensor, restrict the Tx clock frequency within 1 MHz and use SLOW slew rate. 
Figure 151 shows an example on how to select the Slew Rate of the GPIO using the Device 
configurator in the ModusToolbox™ project. Note that using the ports other than the 

recommended ports for CAPSENSE™ might cause higher noise in raw count. 

https://www.cypress.com/documentation/datasheets/psoc-6-mcu-cy8c62x6-cy8c62x7-datasheet
https://www.cypress.com/documentation/datasheets/psoc-6-mcu-psoc-63-ble-datasheet-programmable-system-chip-psoc?source=search&cat=technical_documents
https://www.cypress.com/documentation/datasheets/psoc-6-mcu-cy8c62x5-datasheet-preliminary?source=search&cat=technical_documents
https://www.cypress.com/file/492971/download
https://www.cypress.com/file/492971/download
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Figure 151 Selecting slew rate for GPIOs 

 

 

Figure 152 Externally isolated supply domains 
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7.4.14 Layout rule checklist 

Table 39 provides the checklist to help verify your layout design. 

 Layout rule checklist 

No. Category 
Minimum 

value 
Maximum value Recommendations / Remarks 

1 Button 

Shape N/A N/A 
Circle or rectangular with curved 

edges 

Size 5 mm 15 mm 10 mm 

Clearance to 

ground hatch 
0.5 mm 2 mm 

Should be equal to overlay 

thickness 

2 Slider 

Width of 

segment 
1.5 mm 8 mm 8 mm 

Clearance 
between 

segments 

0.5 mm 2 mm 0.5 mm 

Height of 

segment 
7 mm 15 mm 12 mm 

3 Overlay 

Type N/A N/A 

Material with high relative 

permittivity (except conductors) 

Remove any air gap between 

sensor board and overlay / front 

panel of the casing. 

Thickness for 

buttons 
N/A 5 mm  

Thickness for 

sliders 
N/A 5 mm  

Thickness for 

touchpads 

N/A 0.5 mm 
 

4 Sensor traces 

Width  N/A 7 mil 
Use the minimum width possible 
with the PCB technology that you 

use. 

Length N/A 

300 mm for a 
standard (FR4) 

PCB 

50 mm for flex 

PCB 

Keep as low as possible. 

Clearance to 

ground and 

other traces 

0.25 mm N/A 

Use maximum clearance while 

keeping the trace length as low as 

possible. 

Routing N/A N/A 

Route on the opposite side of the 

sensor layer. Isolate from other 

traces. If any non- CAPSENSE™ 
trace crosses the CAPSENSE™ 
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No. Category 
Minimum 

value 
Maximum value Recommendations / Remarks 

trace, ensure that intersection is 

orthogonal. Do not use sharp turns. 

5 Via 
Number of vias 1 2 

At least one via is required to route 
the traces on the opposite side of 

the sensor layer. 

Hole size N/A N/A 10 mil 

6 Ground 
Hatch fill 

percentage 
N/A N/A 

Use hatch ground to reduce 
parasitic capacitance. Typical 

hatching: 

25% on the top layer (7-mil line, 45-

mil spacing) 

17% on the bottom layer (7-mil 

line, 70-mil spacing) 

7 Series resistor Placement N/A N/A Place the resistor within 10 mm of 

the PSoC™ pin.  

See Figure 153 for an example 
placement of series resistance on 

board. 

8 Shield electrode Spread  N/A 1 cm  If you have PCB space, use 1-cm 

spread. 

9 Guard sensor 

(for water 

tolerance) 

Shape N/A N/A Rectangle with curved edges 

Thickness N/A N/A Recommended thickness of guard 
trace is 2 mm and distance of guard 

trace to shield electrode is 1 mm. 

10 CMOD Placement N/A N/A Place close to the PSoC™ pin. See 
Figure 153 for an example 

placement of CMOD on PCB. 

11 CSH_TANK Placement N/A N/A 

Place close to the PSoC™ pin. See 
Figure 153 for an example 

placement of CSH_TANK on board. 

12 CINTA Placement N/A N/A 
Place close to the PSoC™ pin. See 
Figure 153 for an example 

placement of CINTA on the PCB. 

13 CINTB Placement N/A N/A 
Place close to the PSoC™ pin. See 
Figure 153 for an example 

placement of CINTA on the PCB. 
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CINTx

CMOD

CSH_TANK

560E Resistor

 

Figure 153 Example placement for CMOD, CINTx, CSH_TANK, and series resistance on input lines in 

PSoC™ 4200M device 

7.5 Noise in CAPSENSE™ system 

7.5.1 Finger injected noise 

If the power supply design of the system is poor, the power and ground supplies of a device fluctuates in 

voltage relative to the finger ground (earth ground) in a common mode fashion. This type of noise is called 
common mode noise. Figure 154 illustrates the common mode noise, where both the 5V and the 0V output 

leads of the power supply remain 5V from each other, but they move up and down together, in a “common 
mode” manner.  

This is not a problem, until a finger touch occurs on the button. A finger touch on the button introduces a 

(capacitive) path to the same earth ground and it will create a path for charge flow, which is equivalent to a 

noise signal injected exactly at the finger touch location. This injected noise caused by the common mode noise 

in power supply is called finger injected noise. It is observed only during the finger touch on the button in AC 
powered application and it doesn’t occur in battery powered application. 
 

 

Figure 154 Common mode noise in the power supply 

Note that when the complete system powered by AC supply is held in hand of the user, the entire system will be 
grounded to earth sufficiently and no significant “common-mode” noise would flow through the touching 

finger to earth. However, if the system is connected to the power supply and placed on a desk, a touch on the 
button, can introduce a problematic discharge path to ground.  
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7.5.1.1 Recommendations to reduce the finger injected noise 

The finger injected noise could be reduced by properly following the layout and schematics guidelines 
described in this section. The general recommendations to reduce the finger injected noise is explained below. 

a) Fill the PCB board around the button with hatched pattern and connected it to device ground. Follow the 
recommendations as mentioned in the section Ground plane.  

Figure 155 shows the impact of ground on the finger injected noise for mutual capacitance button and it is 
also true for CSD sensing technique. In the left figure, the system doesn’t have the hatched ground around 
the button and most of the injected noise through the finger pass to the Rx pin of the device through the 
Capacitance formed between the finger and Rx electrode. In the right figure, the system has the hatched 

ground around the button and thus the finger injected noise is having an alternate path to flow which results 

in the reduction of the noise reaching to the device Rx pin.  
 

 

 

 

Figure 155 Effect of ground on finger injected noise 

b) Better power supply design of the system could easily eliminate the common mode noise, which will in 
turn reduce the finger injected noise. 

c) Use software technique that are available in the CAPSENSE™ component to combat the finger injected 
noise such as selecting optimal sensing clock frequency and Multi frequency scanning, and so on. 

d) Increase the overlay thickness will reduce the finger injected noise as it will decrease the capacitance 

formed between the finger and Rx electrode. 
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7.5.2 VDDA noise 

The noise in the system due to unwanted voltage ripples in the VDD supply is called VDDA noise.  

7.5.2.1 Recommendations to reduce the VDDA noise 

The VDDA noise could be reduced by properly following the layout and schematics guidelines in this chapter. 
The general recommendations to reduce the VDDA noise as follows: 

a) Use clean power supply and have VDD ripples below the limits mentioned in the device datasheet.  

b) Use filters or LDO regulator in the VDD power lines. 

c) Use decoupling capacitors on the power supply pins to reduce the conducted noise from the power supply. 

d) To reduce high-frequency noise, place a ferrite bead around power supply or communication lines. 

e) Selecting the proper supply configuration as mentioned in the Power section in the Device datasheet and 
using the internal regulator to the device might help in reducing the VDDA noise. 

7.5.3 External noise 

Any noise that is injected into to the system through the routing trace lines like ESD, EMI, conducted noise are 
coming into the category of external noise. The recommended guidelines for reducing the impact of the 
external noise are discussed in this section. 

7.5.3.1 ESD protection 

The nonconductive overlay material used in CAPSENSE™ provides inherent protection against ESD. Table 40 
lists the thickness of various overlay materials, required to protect the CAPSENSE™ sensors from a 12-kV 

discharge (according to the IEC 61000 - 4 - 2 specification). 

 Overlay thickness for ESD protection 

Material Breakdown voltage (V/mm) 
Minimum overlay thickness for 

protection against 12 kV ESD (mm) 

Air 1200 – 2800 10 

Wood – dry 3900 3 

Glass – common 7900 1.5 

Glass – Borosilicate (Pyrex®) 13,000 0.9 

PMMA Plastic (Plexiglas®) 13,000 0.9 

ABS 16,000 0.8 

Polycarbonate (Lexan®) 16,000 0.8 

Formica 18,000 0.7 

FR-4 28,000 0.4 

PET Film (Mylar®) 280,000 0.04 

Polyimide Film (Kapton®) 290,000 0.04 

 

If the overlay material does not provide sufficient protection (for example, ESD from other directions), you can 
apply other ESD counter-measures, in the following order: Prevent, Redirect, and ESD protection devices. 
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7.5.3.1.1 Preventing ESD discharge 

Preventing the ESD discharge from reaching the PSoC™ is the best countermeasure you can take. Make sure 
that all paths to PSoC™ have a breakdown voltage greater than the maximum ESD voltage possible at the 

surface of the equipment. You should also maintain an appropriate distance between the PSoC™ and possible 
ESD sources. In the example illustrated in Figure 156, if L1 and L2 are greater than 10 mm, the system can 
withstand a 12-kV ESD. 
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Figure 156 ESD paths 

If it is not possible to maintain adequate distance, place a protective layer of nonconductive material with a 

high breakdown voltage between the possible ESD source and PSoC™. One layer of 5-mil thick Kapton® tape 

can withstand 18 kV. See Table 40 for other material dielectric strengths. 

7.5.3.1.2 Redirect 

If your product is densely packed, preventing the discharge event may not be possible. In such cases, you can 
protect the PSoC™ from ESD by redirecting the ESD. A standard practice is to place a ground ring on the 
perimeter of the circuit board, as Figure 157 shows. The ground ring should connect to the chassis ground. 

Using a hatched ground plane around the button or slider sensor can also redirect the ESD event away from the 
sensor and PSoC™. 
 

PSoC™

Ground with conductive 
material on the perimeter to 
redirect the discharge

 

Figure 157 Ground ring 
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7.5.3.1.3 ESD protection devices 

You can use ESD protection devices on vulnerable traces. Select ESD protection devices with a low input 
capacitance to avoid reduction in CAPSENSE™ sensitivity. Table 41 lists the recommended ESD protection 

devices. 

 ESD protection devices 

ESD protection device 
Input 

capacitance 

Leakage 

current 

Contact 
maximum 

ESD limit 

Air discharge maximum ESD 

limit Manufacturer Part number 

Littelfuse SP723 5 pF 2 nA 8 kV 15 kV 

Vishay VBUS05L1-

DD1 

0.3 pF 0.1 µA ±15 kV ±16 kV 

NXP NUP1301 0.75 pF 30 nA 8 kV 15 kV 

7.5.3.2 Electromagnetic compatibility (EMC) considerations 

EMC is related to the generation, transmission, and reception of electromagnetic energy that can affect the 
working of an electronic system. Electronic devices are required to comply with specific limits for emitted 

energy and susceptibility to external events. Several regulatory bodies worldwide set regional regulations to 
help ensure that electronic devices do not interfere with each other. 

CMOS analog and digital circuits have very high input impedance. As a result, they are sensitive to external 

electric fields. Therefore, you should take adequate precautions to ensure their proper operation in the 

presence of radiated and conducted noise. 

Computing devices are regulated in the US by the FCC under Part 15, Sub-Part B for unintentional radiators. 
The standards for Europe and the rest of the world are adapted from CENELEC. These are covered under CISPR 
standards (dual-labeled as ENxxxx standards) for emissions, and under IEC standards (also dual labeled as 

ENxxxx standards) for immunity and safety concerns. 

The general emission specification is EN55022 for computing devices. This standard cover both radiated and 
conducted emissions. Medical devices in the US are not regulated by the FCC, but rather are regulated by FDA 

rules, which include requirements of EN55011, the European norm for medical devices. Devices that include 
motor controls are covered under EN55014 and lighting devices are covered under EN50015. 

These specifications have essentially similar performance limitations for radiated and conducted emissions. 
Radiated and conducted immunity (susceptibility) performance requirements are specified by several sections 

of EN61000-4. Line voltage transients, ESD and some safety issues are also covered in this standard. 
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7.5.3.2.1 Radiated interference and emissions 

While PSoC™ 4 and PRoC Bluetooth® LE offer a robust CAPSENSE™ performance, radiated electrical energy can 
influence system measurements and potentially influence the operation of the CAPSENSE™ processor core. 

Interference enters the CAPSENSE™ device at the PCB level through sensor traces and through other digital and 
analog inputs. CAPSENSE™ devices can also contribute to electromagnetic compatibility (EMC) issues in the 
form of radiated emissions. 

Use the following techniques to minimize the radiated interference and emissions.  

Hardware considerations 

Ground plane 

In general, proper ground plane on the PCB reduces both RF emissions and interference. However, solid 
grounds near CAPSENSE™ sensors or traces connecting these sensors to PSoC™ pins increase the parasitic 

capacitance of the sensors. It is thus recommended to use hatched ground planes surrounding the sensor and 
on the bottom layer of the PCBs, below the sensors, as explained in the Ground  section in PCB layout . Solid 
ground may be used below the device and other circuitry on the PCB which is farther from CAPSENSE™ sensors 

and traces. A solid ground flood is not recommended within 1 cm of CAPSENSE™ sensors or traces. 

Series resistors on CAPSENSE™ pins 

Every CAPSENSE™ controller pin has some parasitic capacitance (CP) associated with it. As Figure 158 shows, 

adding an external resistor forms a low-pass RC filter that attenuates the RF noise amplitude coupled to the 
pin. This resistance also forms a low-pass filter with the parasitic capacitance of the CAPSENSE™ sensor that 
significantly reduces the RF emissions.  
 

PSoC 

CAPSENSE  
Sensor

External Series 
Resistor

Pin Capacitance

 

Figure 158 RC filter 

Series resistors should be placed close to the device pins so that the radiated noise picked by the traces gets 

filtered at the input of the device. Thus, it is recommended to place series resistors within 10 mm of the pins. 

For CAPSENSE™ designs using copper on PCBs, the recommended series resistance for CAPSENSE™ input lines 

is 560 Ω. Adding resistance increases the time constant of the switched-capacitor circuit that converts CP into 

an equivalent resistor; see GPIO cell capacitance to current converter. If the series resistance value is larger 
than 560 Ω, the slower time constant of the switching circuit suppresses the emissions and interference, but 
limits the amount of charge that can transfer. This lowers the signal level, which in turn lowers the SNR. 

Smaller values are better in terms of SNR, but are less effective at blocking RF. 
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Series resistors on digital communication lines 

Communication lines, such as I2C and SPI, also benefit from series resistance; 330 Ω is the recommended value 
for series resistance on communication lines. Communication lines have long traces that act as antennae 
similar to the CAPSENSE™ traces. The recommended pull-up resistor value for I2C communication lines is 
4.7 kΩ. If more than 330 Ω is placed in series on these lines, the VIL and VIH voltage levels may fall out of 

specifications. 330 Ω will not affect I2C operation as the VIL level still remains within the I2C specification limit of 
0.3 VDD when PSoC™ outputs a LOW. 
 

CAPSENSE  
Controller

Vdd Vdd

SCL

SDA

4.7K Ohm

4.7K Ohm

330 Ohm

330 Ohm

 

Figure 159 Series resistors on communication lines 

Trace length 

Long traces can pick up more noise than short traces. Long traces also add to CP. Minimize the trace length 
whenever possible. 

Current loop area 

Another important layout consideration is to minimize the return path for currents. This is important as the 

current flows in loops. Unless there is a proper return path for high-speed signals, the return current will flow 
through a longer return path forming a larger loop, thus leading to increased emissions and interference. 

If you isolate the CAPSENSE™ ground hatch and the ground fill around the device, the sensor-switching current 

may take a longer return path, as Figure 160 shows. As the CAPSENSE™ sensors are switched at a high 

frequency, the return current may cause serious EMC issues. Therefore, you should use a single ground hatch, 
as Figure 161 shows. 
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Figure 160 Improper current loop layout 
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Figure 161 Proper current loop layout 

RF source location 

If your system has a circuit that generates RF noise, such as a switched-mode power supply (SMPS) or an 
inverter, you should place these circuits away from the CAPSENSE™ interface. You should also shield such 

circuits to reduce the emitted RF. Figure 162 shows an example of separating the RF noise source from the 

CAPSENSE™ interface. 
 

Computer Monitor

SMPS/LCD Inverter

CAPSENSE  interface

Computer Monitor

SMPS/LCD Inverter

CAPSENSE  Interface

Not Recommended Recommended

 

Figure 162 Separating noise sources 

Firmware considerations 

The following parameters affect Radiated Emissions (RE) in a CAPSENSE™ system: 

• Device operating voltage 

• Device operation frequency  

• Sensor switching frequency 

• Shield signal  

• Sensor scan time 

• Sense Clock Source Inactive sensor termination 

The following sections explain the effect of each parameter. 
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Device operating voltage 

The emission is directly proportional to the voltage levels at which switching happens. Reducing the operating 
voltage helps to reduce the emissions as the amplitude of the switching signal at any output pin directly 
depends on the operating voltage of the device.  

PSoC™ allows you to operate at lower operating voltages, thereby reducing the emissions. Figure 163 and 
Figure 164 show the impact of operating voltage on radiated emissions. Because IMO = 24 MHz, there is a spike 
at 24 MHz and the other spikes are caused by different hardware and firmware operations of the device. 
 

 

Figure 163 Effect of VDD on radiated emissions (150 kHz – 30 MHz) 

 

 

Figure 164 Effect of VDD on radiated emissions (30 MHz – 1 GHz) 

Note: Frequency axis is in log scale. 

Device operating frequency 

Reducing the system clock frequency (IMO frequency) reduces radiated emissions. However, reducing the IMO 
frequency may not feasible in all applications because the IMO frequency impacts the CPU clock and all other 
system timings. Choose a suitable IMO frequency based on your application. 

Spike at 24 MHz 
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Sensor-switching frequency 

Reducing the sensor-switching frequency (see Sense clock) also helps to reduce radiated emissions. See 
Figure 165 and Figure 166. Because IMO = 24 MHz, there is a spike at 24 MHz and the other spikes are caused 
by different hardware and firmware operations of the device. 
 

 

Figure 165 Effect of sensor-switching frequency on radiated emissions (150 kHz – 30 MHz) 

 

Figure 166 Effect of sensor-switching frequency on radiated emissions (30 MHz – 1 GHz) 

Note: Frequency axis is in log scale. 

Pseudo random sense clock 

The PSoC™ 4 device supports PRS-based sense clock generation. A PRS is used instead of a fixed clock source to 

attenuate emitted noise on the CAPSENSE™ pins by reducing the amount of EMI created by a fixed-frequency 

source and to increase EMI immunity from other sources and their harmonics. 

Spike at 24 MHz 
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Spread spectrum sense clock  

In addition to the PRS-based clock generation, the PSoC™ 4 S-Series, PSoC™ 4100S Plus, PSoC™ 4100PS, and 
PSoC™ 6 MCU family of devices supports a unique feature called spread spectrum sense clock generation, in 
which the sense clock frequency is spread over a desired range. This method will help to reduce the peaks and 
spread out the emissions over a range of frequencies. The spread spectrum clock can be enabled by selecting 

the Sense Clock Source as SSCn. The range of frequency spread is decided by the length of the register. For 
more details on the spread spectrum clock generation in the PSoC™ 4 S-Series, PSoC™ 4100S Plus, and 
PSoC™ 4100PS family, see the Spread spectrum clock section in the CAPSENSE™ chapter of the respective 
device Technical reference manual. 

 

Figure 167 Sense clock sources in PSoC™ 4 S-Series, PSoC™ 4100S Plus, and PSoC™ 4100PS family 

Shield signal 

Enabling the shield signal (see Driven-shield signal and shield electrode) on the hatch pattern increases the 
radiated emissions. Enable the driven-shield signal only for liquid-tolerant, proximity-sensing, or high-

parasitic-capacitance designs. Also, if the shield must be used, ensure that the shield electrode area is limited 

to a width of 1 cm from the sensors, as Figure 148 shows. 

Figure 168 and Figure 169 show the impact of enabling the driven-shield signal on the hatch pattern 
surrounding the sensors on radiated emissions. Note that in these figures, the hatch pattern is grounded when 
the driven-shield signal is disabled. Because IMO = 24 MHz, thesre is a spike at 24 MHz and the other spikes are 
caused by different hardware and firmware operations of the device. 
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Figure 168 Effect of shield electrode on radiated emissions (150 kHz – 30 MHz) 

 

 

Figure 169 Effect of shield electrode on radiated emissions (30 MHz – 1 GHz) 

Note: Frequency axis is in log scale. 

Sensor scan time 

Reducing the sensor scan time reduces the average radiated emissions. The sensor-scan time depends on the 
scan resolution and modulator clock divider (see Equation 9). Increasing the scan resolution or modulator 

clock divider increases the scan time.  

Figure 170 and Figure 171 show the impact of sensor scan time on radiated emissions. Note that, here, the 

sensor scan time was varied by changing the scan resolution. Because IMO = 24 MHz, there is a spike at 24 MHz 

and the other spikes are caused by different hardware and firmware operations of the device. 

Spike at 24 MHz 
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 Sensor scan time 

Parameter 
Total scan time for five buttons 

0.426 ms 0.106 ms 

Modulation clock divider 2 2 

Scan resolution  10 bits 8 bits 

Individual sensor scan time 0.085 ms 0.021 ms 
 

 
Figure 170 Effect of scan time on radiated emissions (150 kHz – 30 MHz) 

 

 

Figure 171 Effect of scan time on radiated emissions (30 MHz – 1 GHz) 

Note: Frequency axis is in log scale. 

Spike at 24 MHz 
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Sense clock source 

Using PRS instead of direct clock drive as sense clock source spreads the radiated spectrum and hence reduces 
the average radiated emissions. See Figure 172 and Figure 173. Because IMO = 24 MHz, there is a spike at 24 
MHz and the other spikes are caused by different hardware and firmware operations of the device. 
 

 

Figure 172 Effect of sense clock source on radiated emissions (150 kHz – 30 MHz) 

 

 

Figure 173 Effect of sense clock source on radiated emissions (30 MHz – 1 GHz) 

Note: Frequency axis is in log scale. 

Inactive sensor termination 

Connecting inactive sensors to ground reduces the radiated emission by a greater degree than connecting 
them to the shield. Figure 174 and Figure 175 show the impact of different inactive sensor terminations on 
radiated emission. Because IMO = 24 MHz, there is a spike at 24 MHz and the other spikes are caused by 

different hardware and firmware operations of the device. 

Spike at 24 MHz 
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Figure 174 Effect of inactive sensor termination on radiated emissions (150 kHz – 30 MHz) 

 

 

Figure 175 Effect of inactive sensor termination on radiated emissions (30 MHz – 1 GHz) 

Note: Frequency axis is in log scale. 

7.5.3.2.2 Conducted RF noise 

The noise current that enters the CAPSENSE™ system through the power and communication lines is called 
conducted noise. You can use the following techniques to reduce the conducted RF noise. 

• Use decoupling capacitors on the power supply pins to reduce the conducted noise from the power supply. 

See section 7.4.11 and the Device datasheet for details. 

• Provide GND and VDD planes on the PCB to reduce current loops. 

• If the PSoC™ PCB is connected to the power supply using a cable, minimize the cable length and consider 
using a shielded cable. 

To reduce high-frequency noise, place a ferrite bead around power supply or communication lines. 

Spike at 24 MHz 
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7.6 Effect of grounding  

7.6.1 CSX method 

The equivalent capacitances formed in the CSX method when a finger touches the CSX sensor is shown in 
Figure 176. From Figure 176, current drawn from the IDAC (IRX) has two components: Imt and Isc. These two 
components depend on the ratio of CbodyDG/Cfs. Because the raw count depends on the amount of current drawn 

from IDAC, the increase and decrease of CbodyDG/Cfs will affect the raw count of the sensor and cause a sudden 

change in the behavior on some conditions. To understand it better, consider two extreme conditions which 
cause CbodyDG>>Cfs and CbodyDG<<Cfs. 
 

 
Figure 176 Equivalent circuit of the CSX sensor when finger is placed on the button 

Where, 

CM = Mutual capacitance between the Rx and Tx electrode  

Cfs = Capacitance formed between the surface of the finger and electrode  

Cfm = Virtual capacitance which reduces the mutual-capacitance CM due to placing a finger 

CbodyDG = Body capacitance relative to the device ground 

Equation 78. Current drawn from IDAC in CSX method 

IRx = Imt + Isc 

Imt is due to the effective mutual-capacitance between the Tx and Rx electrode.  

Isc = Parasitic current that flows due to the capacitance formed between the sensor and finger 
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7.6.1.1 CbodyDG>>Cfs 

Because CbodyDG>>Cfs, you can replace CbodyDG with a ground conductor; the resulting equivalent circuit appears 
as shown in Figure 177. Whenever there is a finger touch, the current drawn from the IDAC is directly 

dependent upon the effective mutual-capacitance between the Tx and Rx. This condition is observed in a good 
board design. 
 

 

Figure 177 Equivalent circuit of the CSX sensor when Cbody>>Cfs 

7.6.1.2 CbodyDG<<Cfs 

This condition (CbodyDG<<Cfs) is observed when a finger touches a CSX button with a very thin overlay or no 
overlay, or a finger touching the Rx and Tx electrodes directly, or a water drop being present on the Rx and Tx 

electrode only. Because CbodyDG<<Cfs, you can remove CbodyDG; the equivalent circuit for this case is as shown in 

Figure 178. In this condition, the capacitance introduced by the finger to the electrode Cfs is very high 
compared to the capacitance of the finger relative to the device ground CbodyDG.  

From Figure 178, it forms a balanced bridge circuit. Due to this, no current flows through Cfm, and also due to 
increase in Cfs, Isc increases and thus additional current is drawn from the IDAC. This causes an unexpected 

behavior of decrease in the raw count.  
 

 

Figure 178 Equivalent circuit of the CSX sensor when Cbody<<Cfs 

For CSX sensors, design should focus on increasing the ratio of CbodyDG/Cfs. Following are the examples for 
increasing the ratio of CbodyDG/Cfs: 

1. CbodyDG/Cfs ratio depends on the thickness of the overlay, size of the sensor, and many other factors. By 
experimental data, you are recommended not to use overlay thickness below 0.5 mm for CSX sensor. See 

Overlay thickness.  

2. If the sensor is surrounded by hatch fill connected to ground, there is a lower chance that CbodyDG<<Cfs. 
Therefore, ensure good ground in the design. Follow the best practices for the PCB layout guidelines described 

in this chapter. 



  

Application Note 211 of 229 001-85951 Rev. AA  

   2021-10-01 

 

PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide 
  

Design considerations 

  

3. In the design, it is recommended to isolate the trace lines of Rx and Tx electrode, external capacitors, and 
resistors of the CSX touch sensing system from any conducting surface or a finger touch to avoid direct 

interaction. Not following this recommendation may cause CbodyDG<<Cfs. 

7.6.2 CSD method 

The equivalent capacitances formed in the CSD method when a finger touches the CSD sensor is shown in 
Figure 179. It shows that the current drawn from the IDAC directly depends on the capacitance introduced by 
the finger touch. ICP is a fixed component and ICF depends on CF, CBG, CGE. From Equation 10, the raw count 

depends on the amount of current drawn from IDAC. To understand it better, consider two scenarios of an AC/ 

DC mains-powered application and a battery-powered application. 
 

 

Figure 179 Equivalent circuit of the CSD sensor 

Equation 79. Current drawn from IDAC in CSD method 

I = ICP + ICF 

7.6.2.1 AC / DC-powered application 

In an AC / DC-powered application using the mains supply, device ground is strongly coupled to earth ground. 
Thus, you can replace CGE with a conductor and CBG is usually 100 pF to 200 pF. Since CBG is large when 
compared to CF, you can neglect its effect. Finally, the resulting equivalent circuit is shown in Figure 180. The 
increase in total capacitance draws a higher current from the IDAC achieving a higher change in raw count for a 
finger touch. Thus, in this condition, you get a higher sensitivity, which means that you will get a higher signal 

for a finger touch. 
 

  

Figure 180 Equivalent circuit of the CSD sensor for mains-powered application 
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7.6.2.2 Battery-powered application 

In battery-powered portable applications, device ground and earth ground are lightly coupled, thus CGE is small. 
The resulting equivalent circuit is shown in Figure 181. Thus, in this condition, you get a lower sensitivity; that 

means you will get a lower signal for a finger touch, which is due to a decrease in capacitance seen at the 
device.  
 

 

Figure 181 Equivalent circuit of the CSD for battery-powered application 

Following are the recommendations for a CSD system design in a portable application powered by a battery: 

1. Add a large ground plane to the system. The ground plane should be away from the sensing element such 

that it does not increase the parasitic capacitance of the sensor. Follow the best practices for the PCB 
layout guidelines described in this chapter. 

2. Use a driven shield to improve the sensitivity of portable devices. Refer to the Layout guidelines for shield 

electrode for more details.  

3. Reduce the thickness of the overlay material or use an overlay with better dielectric value to improve 

sensitivity. 

4. Tune the CAPSENSE™ system with powering it by a battery source. 
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8 CAPSENSE™ Plus 

PSoC™ 4 can perform many additional functions along with CAPSENSE™. The wide variety of features offered by 
this device allows you to integrate various system functions in a single chip, as Figure 182 shows. Such 
applications are known as CAPSENSE™ Plus applications. 
 

CAPSENSE CapSense Plus

BLE, I2C, UART, SPI
ADC, Comparators, 

Opamps

PWMs, Counters, 
Timers

System Functionality

Segment LCD Drive, 
LED Effects, 

Proximity

 

Figure 182 CAPSENSE™ Plus 

The additional features available in a PSoC™ 4 device include:  

• Communication: Bluetooth® LE, I2C, UART, SPI, CAN, and LIN 

• Analog functions: ADC, comparators, and opamps 

• Digital functions: PWMs, counters, timers, and UDBs 

• Segment LCD drive 

• Bootloaders 

• Different power modes: Active, sleep, deep sleep, hibernate, and stop 

While using above mentioned additional features, it is recommended to configure it in sinking mode as 

applicable. 

For more information on PSoC™ 4, see AN79953 - Getting started with PSoC™ 4, or AN91267 - Getting 

started with PSoC™ 4 Bluetooth® LE.  

The flexibility of the PSoC™ 4 and the unique PSoC™ Creator IDE allow you to quickly make changes to your 

design, which accelerates time-to-market. Integrating other system functions significantly reduces overall 
system cost. Table 43 shows a list of example applications, where using CAPSENSE™ Plus can result in 

significant cost savings. 

http://www.cypress.com/?rID=78695&source=an85951
http://www.cypress.com/?rID=102504
http://www.cypress.com/?rID=102504
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 Examples of CAPSENSE™ Plus 

Application CAPSENSE™ Opamp ADC Comp 

PWM, 

Counter, 

Timer, UDBs 

Comm 

(Bluetooth® 

LE, I2C, SPI, 

UART) 

LCD drive GPIOs 

Heart rate 

monitor (wrist 

band) 

User interface: 

buttons, linear 

sliders 

TIA, 

Buffer 

Heart Rate 

Measurement, 

Battery voltage 

measurement 

 LED Driving Bluetooth® LE 
Segment 

LCD 

LED 

indication 

LED bulb 

User interface: 

buttons, radial 

sliders 

Amplifier 
LED current 

measurement 

Short circuit 

protection 

LED color 

control 

(PrISM*) 

Bluetooth® LE  LED 

indication 

Washing 

machine 

User interface: 

buttons, radial 

sliders 
 

Temperature 

sensor 

Water level 

monitor 

Buzzer, 

FOC** motor 

control 

I2C LCD 

display, UART 

network 

interface 

Segment 

LCD 

LED 

indication 

Water heater 

User interface: 

buttons, linear 

sliders 

 

Temperature 

sensor, water flux 

sensor 

Water level 

monitor 
Buzzer 

I2C LCD 

display, UART 

Network 

Interface 

Segment 

LCD 

LED 

indication 

IR remote 

controllers 

User interface: 

buttons, linear 

and radial 

sliders, 

touchpads 

   
Manchester 

encoder 
  

LED 

indication 

Induction 

cookers 

User interface: 

buttons, linear 

sliders 
 

Temperature 

sensor 
   

Segment 

LCD 

LED 

indication 

Motor control 

systems 

User interface: 

buttons, linear 

sliders 

   

BLDC*** and 

FOC motor 

control 

  
LED 

indication 

Gaming / 

simulation 

controllers 

User interface: 

buttons, 

touchpads 
 

Reading analog 

joysticks 
  

I2C/SPI/UART 

communicati

on interface 

Segment 

LCD 

LED 

indication 

Thermal 

printers 

User interface: 

buttons 
 

Overheat 

protection, paper 

sensor 
 

Stepper 

motor control 

SPI 

communicati

on interface 
 

LED 

indication 

* PrISM = Precision illumination signal modulation 

** FOC = Field oriented control 

*** BLDC = Brushless DC motor 
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Figure 183 shows a general block diagram of a CAPSENSE™ Plus application, such as an induction cooker or a 
microwave oven. 

 ADC

8-bit PWM

M
U

X
Ext INT

Temperature 

Cortex
®
-M0

AC

Zero Crossing 

 
8~16

Buttons,
Slider

Heater

Voltage

Current

CAPSENSE 
Module 

I/ O

LED / LCD Interface 

I2C/SPI To Main Board

5 V Power

PWM

PSoC  4

 

Figure 183 CAPSENSE™ Plus system with PSoC™ 4 

In this application, the 12-bit 1-Msps SAR ADC in the PSoC 4 detects over-current, overvoltage, and high 
temperature conditions. The PWM output drives the speaker for status and alarm tones. Another PWM controls 

the heating element in the system. The CAPSENSE™ buttons and slider constitute the user interface. PSoC 4 can 
also drive a segment LCD for visual outputs. PSoC 4 has a serial communication block that can connect to the 
main board of the system. 

Figure 184 shows the application-level block diagram of a fitness tracker based on PSoC™ 6 MCU with 

Bluetooth® LE Connectivity. The device provides a one-chip solution and includes features like activity 
monitoring, environment monitoring, CAPSENSE™ for user interface, Bluetooth® LE connectivity, and so on. For 
more information on PSoC™ 6 MCU, see AN210781 – Getting started with PSoC™ 6 MCU with Bluetooth® LE 
connectivity. 

http://www.cypress.com/an210781
http://www.cypress.com/an210781
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PSoC    MCU with BLE Connectivity 
Wearable Solution

Display

Display 
driver 
(SCB)

A
M
U
X

ADC

SPI

QSPI324

RTC

32

32

32

CAPSENSE 

32 5

6

Slider
Arm®

Cortex® -
M4 & M0+ 

MCU

Thermistor

BLE

BLE 32

I2C

232

6
Motion 
Sensor

PDM

322

Digital 
Microphone

UART

432

GPS

I2C

322

SPI

532
Finger- print 

Sensor

PSoC  

4100PS

Air quality 
sensor

Battery V/I

Haptics

PWM

321

 

Figure 184 Fitness tracker application with PSoC™ 6 MCU with Bluetooth® LE connectivity block 

diagram 

CAPSENSE™ Plus systems, such as the above two examples, allow you to reduce your board size, BOM cost, and 

power consumption. 
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9 Resources 

9.1 Website 

Visit the Getting started with PSoC 4™, Getting started with PSoC™ 4 Bluetooth® LE, Getting started with 
PSoC™ 6 MCU, and Getting started with PSoC™ 6 MCU with Bluetooth® LE connectivity website to 
understand the PSoC™ 4, PSoC™ 6 MCU with Bluetooth® LE connectivity. 

9.2 Device datasheet 

• PSoC™ 4 datasheet  

• PSoC™ 4 Bluetooth® LE datasheet  

• PSoC™ 6 MCU devices  

9.3 Component datasheet / middleware document 

• PSoC™ 4 Capacitive Sensing  

• PSoC™ 6 capacitive sensing  

• CAPSENSE™ middleware library  

• ModusToolbox™ CAPSENSE™ configurator guide  

9.4 Technical reference manual 

The PSoC™ 4 Technical reference manual (TRM) and PSoC™ 6 Technical reference manual (TRM) provide 
quick and easy access to information on PSoC™ 4 and PSoC™ 6 architecture including top-level architectural 

diagrams, register summaries, and timing diagrams. 

9.5 Development kits 

Table 6 lists Infineon® development kits that support PSoC™ 4 and PSoC™ 6 CAPSENSE™. 

9.6 PSoC™ Creator 

PSoC™ Creator is a state-of-the-art, easy-to-use integrated development environment. See the PSoC™ Creator 

home page. 

9.7 ModusToolbox™ 

ModusToolbox™ software suite is used for the development of PSoC™ 4 and PSoC™ 6 based CAPSENSE™ 

applications. You can download the ModusToolbox™ software here. The related documents are as follows: 

• ModusToolbox™ release notes  

• ModusToolbox™ install guide  

• ModusToolbox™ user guide  

• ModusToolbox™ quick start guide  

• ModusToolbox™ CAPSENSE™ configurator  

• ModusToolbox™ CAPSENSE™ tuner  

• ModusToolbox™ device configurator  

• ModusToolbox™ SmartIO configurator  

• PSoC™ Creator to ModusToolbox™  

http://www.cypress.com/?rID=78695&source=an85951
http://www.cypress.com/?rID=102504
http://www.cypress.com/an221774
http://www.cypress.com/an221774
http://www.cypress.com/an210781
http://www.cypress.com/?id=4749&rtID=107&source=an85951
http://www.cypress.com/?rID=99492&source=psoc4ble
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575&f%5B2%5D=field_related_products%3A114026
https://www.cypress.com/documentation/component-datasheets/psoc-4-capacitive-sensing-capsense
https://www.cypress.com/documentation/component-datasheets/psoc-6-capacitive-sensing-capsense-20
https://github.com/cypresssemiconductorco/capsense
http://www.cypress.com/ModusToolboxCapSenseConfig
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A1297&f%5b2%5d=resource_meta_type%3A583
http://www.cypress.com/psoc6trm
http://www.cypress.com/?id=2494&source=an85951
http://www.cypress.com/?id=2494&source=an85951
http://www.cypress.com/modustoolbox
http://www.cypress.com/ModusToolboxReleaseNotes
http://www.cypress.com/ModusToolboxInstallGuide
http://www.cypress.com/ModusToolboxUserGuide
http://www.cypress.com/ModusToolboxQSG
http://www.cypress.com/ModusToolboxCapSenseConfig
http://www.cypress.com/ModusToolboxCapSenseTuner
http://www.cypress.com/ModusToolboxDeviceConfig
http://www.cypress.com/ModusToolboxSmartIOConfig
http://www.cypress.com/ModusToolboxUserGuide
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• ModusToolbox™ command line  

9.8 Application notes 

® A large collection of application notes are available to get your design up and running fast. See PSoC™ 4 
application notes, PSoC™ 4 Bluetooth® LE application notes, CAPSENSE™ application notes and design 
guides.  

Following is the list  of CAPSENSE™ specific applications notes: 

Design guide for PSoC™ 3 and PSoC™ 5LP devices 

• PSoC™ 3 and PSoC™ 5LP CAPSENSE™ design guide  

Design guides for the CAPSENSE™ Express family 

• CY8CMBR3XXX CAPSENSE™ design guide  

• CY8CMBR2110 CAPSENSE™ design guide  

• CY8CMBR2016 CAPSENSE™ design guide  

• CY8CMBR2010 CAPSENSE™ design guide  

• CY8CMBR2044 CAPSENSE™ design guide  

• CAPSENSE™ Express™: CY8C201XX application notes  

Design guides for PSoC™ 1 devices 

• CY8C20XX7/S design guide  

• CY8C20XX6A/H CAPSENSE™ design guide  

• CY8C21X34/B CAPSENSE™ design guide  

• CY8C20X34 CAPSENSE™ design guide  

Getting started application note 

• AN79953 - Getting started with PSoC™ 4  

• AN210781 – Getting started with PSoC™ 6 MCU with Bluetooth® LE connectivity   

• AN221774 – Getting started with PSoC™ 6 MCU   

9.9 Design support 

• Knowledge base articles – Browse technical articles by product family or perform a search on CAPSENSE™ 
topics.  

• White papers – Learn about advanced capacitive-touch interface topics. 

• Cypress developer community – Connect with the  technical community and exchange information. 

• Video library – Quickly get up to speed with tutorial videos. 

• Quality and reliability – We are committed to complete customer satisfaction. At our Quality website, you 
can find reliability and product qualification reports. 

• Technical support – Submit your design for review by creating a support case. You need to register and 

login at the website to be able to contact technical support. It is recommended to use PDF prints for the 

schematic and Gerber files with layer information for the layout. 

 

http://www.cypress.com/ModusToolboxUserGuide
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A1297&f%5b2%5d=resource_meta_type%3A574
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A1297&f%5b2%5d=resource_meta_type%3A574
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=76&id=5301
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A1316&f%5b2%5d=resource_meta_type%3A574
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A1316&f%5b2%5d=resource_meta_type%3A574
http://www.cypress.com/?rID=58549
http://www.cypress.com/?rID=90800
http://www.cypress.com/?rID=66759
http://www.cypress.com/?rID=58572
http://www.cypress.com/?rID=61673
http://www.cypress.com/?rID=48789
http://www.cypress.com/documentation/application-notes/capsense-express-cy8c201xxx-application-notes
http://www.cypress.com/?rID=63035
http://www.cypress.com/?rID=48788
http://www.cypress.com/?rID=48791
http://www.cypress.com/?rID=48790
http://www.cypress.com/documentation/application-notes/an79953-getting-started-psoc-4
http://www.cypress.com/an210781
http://www.cypress.com/documentation/application-notes/an221774-getting-started-psoc-6-mcu
http://www.cypress.com/knowledge-base-search
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=resource_meta_type%3A581&f%5b2%5d=field_related_products%3A1323
http://www.cypress.com/?id=2203&source=an85951
http://www.cypress.com/?id=2660&source=an85951
http://www.cypress.com/?id=1090&source=an85951
http://www.cypress.com/support
http://www.cypress.com/support
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10 Glossary 

AMUXBUS 

Analog multiplexer bus available inside PSoC™ that helps to connect I/O pins with multiple internal analog 
signals. 

Baseline 

A value resulting from a firmware algorithm that estimates a trend in the Raw Count when there is no human 
finger present on the sensor. The Baseline is less sensitive to sudden changes in the Raw Count and provides a 
reference point for computing the Difference Count.  

Button or button widget 

A widget with an associated sensor that can report the active or inactive state (that is, only two states) of the 
sensor. For example, it can detect the touch or no-touch state of a finger on the sensor. 

Difference count 

The difference between Raw Count and Baseline. If the difference is negative, or if it is below Noise Threshold, 

the Difference Count is always set to zero. 

Capacitive sensor 

A conductor and substrate, such as a copper button on a printed circuit board (PCB), which reacts to a touch or 
an approaching object with a change in capacitance. 

CAPSENSE 

 Infineon® Touch-sensing user interface solution. The industry’s No. 1 solution in sales by 4x over No. 2. 

CAPSENSE Mechanical Button Replacement (MBR) 

 Configurable solution to upgrade mechanical buttons to capacitive buttons, requires minimal engineering 
effort to configure the sensor parameters and does not require firmware development. These devices include 
the CY8CMBR3XXX and CY8CMBR2XXX families. 

Centroid or Centroid Position 

A number indicating the finger position on a slider within the range given by the Slider Resolution. This number 
is calculated by the CAPSENSE™ centroid calculation algorithm. 

Compensation IDAC 

A programmable constant current source, which is used by CSD to compensate for excess sensor CP. This IDAC 
is not controlled by the Sigma-Delta Modulator in the CSD block unlike the Modulation IDAC.  

CSD 

CAPSENSE™ Sigma Delta (CSD) is a patented method of performing self-capacitance (also called self-cap) 
measurements for capacitive sensing applications. 

In CSD mode, the sensing system measures the self-capacitance of an electrode, and a change in the self-

capacitance is detected to identify the presence or absence of a finger. 
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Debounce 

A parameter that defines the number of consecutive scan samples for which the touch should be present for it 
to become valid. This parameter helps to reject spurious touch signals. 

A finger touch is reported only if the Difference Count is greater than Finger Threshold + Hysteresis for a 
consecutive Debounce number of scan samples. 

Driven-shield 

A technique used by CSD for enabling liquid tolerance in which the Shield Electrode is driven by a signal that is 
equal to the sensor switching signal in phase and amplitude.  

Electrode 

A conductive material such as a pad or a layer on PCB, ITO, or FPCB. The electrode is connected to a port pin on 
a CAPSENSE™ device and is used as a CAPSENSE™ sensor or to drive specific signals associated with 
CAPSENSE™ functionality. 

Finger threshold 

A parameter used with Hysteresis to determine the state of the sensor. Sensor state is reported ON if the 

Difference Count is higher than Finger Threshold + Hysteresis, and it is reported OFF if the Difference Count is 
below Finger Threshold – Hysteresis.  

Ganged sensors 

The method of connecting multiple sensors together and scanning them as a single sensor. Used for increasing 
the sensor area for proximity sensing and to reduce power consumption.  

To reduce power when the system is in low-power mode, all the sensors can be ganged together and scanned 

as a single sensor taking less time instead of scanning all the sensors individually. When you touch any of the 
sensors, the system can transition into active mode where it scans all the sensors individually to detect which 

sensor is activated.  

PSoC™ supports sensor-ganging in firmware, that is, multiple sensors can be connected simultaneously to 

AMUXBUS for scanning.  

Gesture 

Gesture is an action, such as swiping and pinch-zoom, performed by the user. CAPSENSE™ has a gesture 
detection feature that identifies the different gestures based on predefined touch patterns. In the CAPSENSE™ 
Component, the Gesture feature is supported only by the Touchpad Widget. 

Guard sensor 

Copper trace that surrounds all the sensors on the PCB, similar to a button sensor and is used to detect a liquid 
stream. When the Guard Sensor is triggered, firmware can disable scanning of all other sensors to prevent false 

touches.  

Hatch fill or hatch ground or hatched ground 

While designing a PCB for capacitive sensing, a grounded copper plane should be placed surrounding the 

sensors for good noise immunity. But a solid ground increases the parasitic capacitance of the sensor which is 
not desired. Therefore, the ground should be filled in a special hatch pattern. A hatch pattern has closely-
placed, crisscrossed lines looking like a mesh and the line width and the spacing between two lines determine 
the fill percentage. In case of liquid tolerance, this hatch fill referred as a shield electrode is driven with a shield 
signal instead of ground. 
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Hysteresis 

A parameter used to prevent the sensor status output from random toggling due to system noise, used in 
conjunction with the Finger Threshold to determine the sensor state. See Finger threshold. 

IDAC (current-output digital-to-analog converter) 

Programmable constant current source available inside PSoC™, used for CAPSENSE™ and ADC operations. 

Liquid tolerance  

The ability of a capacitive sensing system to work reliably in the presence of liquid droplets, streaming liquids 

or mist.  

Linear slider 

A widget consisting of more than one sensor arranged in a specific linear fashion to detect the physical position 

(in single axis) of a finger. 

Low baseline reset 

A parameter that represents the maximum number of scan samples where the Raw Count is abnormally below 

the Negative Noise Threshold. If the Low Baseline Reset value is exceeded, the Baseline is reset to the current 

Raw Count. 

Manual-tuning 

The manual process of setting (or tuning) the CAPSENSE™ parameters.  

Matrix buttons 

A widget consisting of more than two sensors arranged in a matrix fashion, used to detect the presence or 

absence of a human finger (a touch) on the intersections of vertically and horizontally arranged sensors. 

If M is the number of sensors on the horizontal axis and N is the number of sensors on the vertical axis, the 
Matrix Buttons Widget can monitor a total of M x N intersections using ONLY M + N port pins. 

When using the CSD sensing method (self-capacitance), this Widget can detect a valid touch on only one 
intersection position at a time.  

Modulation capacitor (CMOD) 

An external capacitor required for the operation of a CSD block in Self-Capacitance sensing mode. 

Modulator clock 

A clock source that is used to sample the modulator output from a CSD block during a sensor scan. This clock is 

also fed to the Raw Count counter. The scan time (excluding pre and post processing times) is given by  
(2N – 1)/Modulator Clock Frequency, where N is the Scan Resolution.  

Modulation IDAC 

Modulation IDAC is a programmable constant current source, whose output is controlled (ON/OFF) by the 
sigma-delta modulator output in a CSD block to maintain the AMUXBUS voltage at VREF. The average current 
supplied by this IDAC is equal to the average current drawn out by the sensor capacitor.  

Multi sense converter (MSC) 

The multi sense converter is the analog to digital converter used in Fifth-Generation CAPSENSE™ technology 
also known as Ratiometric sensing technology. 
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Mutual-capacitance  

Capacitance associated with an electrode (say Tx) with respect to another electrode (say Rx) is known as 
mutual-capacitance. 

Negative noise threshold 

A threshold used to differentiate usual noise from the spurious signals appearing in negative direction. This 
parameter is used in conjunction with the Low Baseline Reset parameter.  

Baseline is updated to track the change in the Raw Count as long as the Raw Count stays within Negative Noise 
Threshold, that is, the difference between Baseline and Raw count (Baseline – Raw count) is less than Negative 
Noise Threshold. 

Scenarios that may trigger such spurious signals in a negative direction include: a finger on the sensor on 

power-up, removal of a metal object placed near the sensor, removing a liquid-tolerant CAPSENSE™-enabled 

product from the water; and other sudden environmental changes. 

Noise (CAPSENSE™ noise) 

The variation in the Raw Count when a sensor is in the OFF state (no touch), measured as peak-to-peak counts.  

Noise threshold 

A parameter used to differentiate signal from noise for a sensor. If Raw Count – Baseline is greater than Noise 
Threshold, it indicates a likely valid signal. If the difference is less than Noise Threshold, Raw Count contains 

nothing but noise. 

Overlay 

A non-conductive material, such as plastic and glass, which covers the capacitive sensors and acts as a touch-

surface. The PCB with the sensors is directly placed under the overlay or is connected through springs. The 
casing for a product often becomes the overlay. 

Parasitic capacitance (CP) 

Parasitic capacitance is the intrinsic capacitance of the sensor electrode contributed by PCB trace, sensor pad, 
vias, and air gap. It is unwanted because it reduces the sensitivity of CSD. 

Proximity sensor 

A sensor that can detect the presence of nearby objects without any physical contact.  

Radial slider 

A widget consisting of more than one sensor arranged in a specific circular fashion to detect the physical 

position of a finger. 

Raw count 

The unprocessed digital count output of the CAPSENSE™ hardware block that represents the physical 

capacitance of the sensor. 

Refresh interval 

The time between two consecutive scans of a sensor. 

Scan resolution 

Resolution (in bits) of the Raw Count produced by the CSD block. 
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Scan time 

Time taken for completing the scan of a sensor.  

Self-capacitance 

The capacitance associated with an electrode with respect to circuit ground. 

Sensitivity 

The change in Raw Count corresponding to the change in sensor capacitance, expressed in counts/pF. 
Sensitivity of a sensor is dependent on the board layout, overlay properties, sensing method, and tuning 

parameters. 

Sense clock 

A clock source used to implement a switched-capacitor front-end for the CSD sensing method.  

Sensor 

See Capacitive sensor. 

Sensor auto reset  

A setting to prevent a sensor from reporting false touch status indefinitely due to system failure, or when a 

metal object is continuously present near the sensor. 

When Sensor Auto Reset is enabled, the Baseline is always updated even if the Difference Count is greater than 
the Noise Threshold. This prevents the sensor from reporting the ON status for an indefinite period of time. 

When Sensor Auto Reset is disabled, the Baseline is updated only when the Difference Count is less than the 

Noise Threshold. 

Sensor ganging 

See Ganged sensors. 

Shield electrode 

Copper fill around sensors to prevent false touches due to the presence of water or other liquids. Shield 

Electrode is driven by the shield signal output from the CSD block. See Driven-shield. 

Shield tank capacitor (CSH) 

An optional external capacitor (CSH Tank Capacitor) used to enhance the drive capability of the CSD shield, 

when there is a large shield layer with high parasitic capacitance. 

Signal (CAPSENSE™ signal) 

Difference Count is also called Signal. See Difference Count.  

Signal-to-noise ratio (SNR) 

The ratio of the sensor signal, when touched, to the noise signal of an untouched sensor. 

Slider resolution 

A parameter indicating the total number of finger positions to be resolved on a slider. 
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SmartSense™ auto-tuning  

A CAPSENSE™ algorithm that automatically sets sensing parameters for optimal performance after the design 
phase and continuously compensates for system, manufacturing, and environmental changes. 

Touchpad 

A Widget consisting of multiple sensors arranged in a specific horizontal and vertical fashion to detect the X and 
Y position of a touch.  

Trackpad 

See Touchpad. 

Tuning 

The process of finding the optimum values for various hardware and software or threshold parameters 

required for CAPSENSE™ operation. 

VREF 

Programmable reference voltage block available inside PSoC™ used for CAPSENSE™ and ADC operation. 

Widget 

A user-interface element in the CAPSENSE™ Component that consists of one sensor or a group of similar 
sensors. Button, proximity sensor, linear slider, radial slider, matrix buttons, and touchpad are the supported 

widgets. 
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